
Submitted by
Markus Weißenbek, BSc

Submitted at
Institute of Telecooper-
ation - Department of
Cooperative Information
Systems

Supervisor
Assoc.Prof. Mag. Dr.
Wieland Schwinger,
MSc

Co-Supervisor
a.Univ.-Prof. Mag. Dr.
Werner Retschitzegger

July 2019

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Towards decentralized
Volunteer Management
Systems –
Conceptual Approach &
Architecture

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

S W O R N D E C L A R AT I O N

I hereby declare under oath that the submitted Master’s Thesis has been
written solely by me without any third-party assistance, information
other than provided sources or aids have not been used and those used
have been fully documented. Sources for literal, paraphrased and cited
quotes have been accurately credited.
The submitted document here present is identical to the electronically
submitted text document.

Linz, July, 10 2019

ii

A B ST R A C T

Volunteering is an invaluable contribution to our society, playing a
tremendous role not only in overcoming large scale crises as shown by
the refugee crisis in 2015, but also in much smaller scale activities like
mentoring children or teenagers. Volunteering almost always involves
cooperative activities involving other people and volunteers and is gen-
erally an unpaid activity aiming to help society. While a lot of people
are volunteering for large, globally acting organizations like the Red
Cross, also the number of volunteers, volunteering for other individu-
als outside of any organizational structure should not be understated.
Volunteering typically is associated with health care and ambulance ser-
vice, volunteering goes far beyond those domains and also spans across
educational services, social services, environmental protection or dis-
aster relief. Not least due to the sheer amount of volunteers, extensive
IT-support for volunteer-involving organizations (VIO) is indispensable
leading to the establishment of volunteer management systems (VMS).
VMS are not only used to efficiently allocate volunteers to volunteering
opportunities, but try to support all phases of the volunteering process
including volunteer acquisition, volunteer coordination and volunteer
retainment, e.g. by incorporating diverse motivation strategies.
While existing VMS already excel at supporting VIOs with, e.g., the
management of tasks or resources, the support for volunteers often
lacks behind, disregarding the utilization of already earned compe-
tences for other VIOs and external parties, e.g., recruitment agencies,
due to the lack of missing interoperability. The system iVolunteer de-
scribed in this thesis tries to tackle these problems, by centering its
functionality around volunteers and investigating ”how their engage-
ment can be digitized and exploited in a life-long way”. Thus, based on
a systematic identification of requirements, a digital volunteer ecosys-
tem is proposed, focusing on incorporating various VIOs, providing
interoperability between them and allowing volunteers to exploit their
competences not only within these VIOs but also beyond them. Mitigat-
ing the current trend of data silos, volunteers are given sovereignty over
their earned competences, providing them with means to privately store
and manage them, leading to the necessity to provide for appropriate
verification thereof, incorporating a blockchain in order to establish
trust.

iii

K U R Z FA S S U N G

Freiwilligenarbeit stellt einen unbezahlbaren Beitrag für unsere Gesell-
schaft dar und spielt eine enorme Rolle, nicht nur bei der Überwindung
großer Krisen, wie die Flüchtlingskrise im Jahr 2015 gezeigt hat, son-
dern auch bei weitaus kleineren Aktivitäten wie der Betreuung von
Kindern oder Jugendlichen. Freiwilligenarbeit umfasst meist koopera-
tive Aktivitäten, an denen andere Menschen bzw. Freiwillige beteiligt
sind und ist im Allgemeinen eine unbezahlte Aktivität zum Wohle der
Gesellschaft. Während sich viele Menschen freiwillig für große, global
agierende Organisationen wie das Rote Kreuz engagieren, sollte die
Anzahl jener Freiwilligen, die sich für andere Personen außerhalb einer
Organisationsstruktur engagieren, nicht unterschätzt werden. Freiwilli-
genarbeit wird in der Regel mit Gesundheits- und Krankenpflegedien-
sten in Verbindung gebracht, allerdings geht sie weit über diese Bereiche
hinaus und erstreckt sich auch über Bildungseinrichtungen, soziale Di-
enste, Umweltschutz oder Katastrophenhilfe. Nicht zuletzt aufgrund
der großen Zahl von Freiwilligen ist eine umfassende IT-Unterstützung
für Freiwilligenorganisationen (VIO) durch sog. Freiwilligenmanage-
mentsystemen (VMS) unabdingbar. VMS werden nicht nur verwendet,
um Freiwilligen effizient Freiwilligentätigkeiten zuzuweisen, sondern
versuchen, alle Phasen des Freiwilligenprozesses zu unterstützen, ein-
schließlich der Freiwilligenakquise, des Freiwilligenkoordination und
der Freiwilligenbindung, z.B. durch Einbeziehung verschiedener Moti-
vationsstrategien.
Während bestehende VMS bereits umfangreiche Funktionalität bei der
Unterstützung von VIOs bieten, z.B. bei der Verwaltung von Aufgaben
oder Ressourcen, ist die Unterstützung für Freiwillige selbst häufig
nicht vorhanden und bspw. vernachlässigt die automatisierte Erfassung
und Nutzung bereits erworbener Kompetenzen für andere VIOs und
externe Parteien, z.B. Personalagenturen. In dieser Masterarbeit wird
das System iVolunteer vorgestellt, welches versucht, diese Probleme
zu lösen, indem dezidierte Funktionalitäten für Freiwillige zur Verfü-
gung gestellt werden und untersucht, ”wie ihr Engagement digitalisiert
und lebenslang genutzt werden kann”. Auf der Grundlage einer sys-
tematischen Ermittlung der Anforderungen wird daher ein digitales
Freiwilligen-Ökosystem vorgeschlagen, das sich darauf fokussiert, ver-
schiedene VIOs einzubeziehen, für Interoperabilität zwischen ihnen zu
sorgen und es Freiwilligen zu ermöglichen, ihre Kompetenzen nicht
nur innerhalb dieser VIOs, sondern auch außerhalb dieser zu nutzen.
Um den aktuellen Trend von Datensilos entgegenzuwirken, erhalten
Freiwillige die Souveränität über ihre erbrachten Leistungen und er-
worbenen Kompetenzen und bekommen die Möglichkeit, sie privat zu
speichern und zu verwalten. Dies macht eine Verifizierung dieser er-
forderlich, die auf Basis sog. "Blockchain-Technologie" erfolgt um deren
Nachweisbarkeit sicherzustellen und somit entsprechendes Vertrauen
zu schaffen.

iv

A C K N O W L E D G M E N T S

At this point, I would like to thank all those who have significantly
supported me throughout the realization of this Master’s thesis. Most
of all, I would like to thank both of my supervisors, a.Univ-Prof. Mag.
Dr. Werner Retschitzegger and Assoc. Prof. Mag. Dr. Schwinger MSc for
their extremely professional and competent care. For their constructive
criticism, wealth of ideas and the endless effort, which you have spent
over the last years. For my parents Monika and Johann as well as
their respective significant others Alois and Hermine, unwaveringly
supporting me throughout my life, without them I would not have
come this far. I’m tremendously happy abount having won the first
price in the lottery of birth.
For my best friends - Markus, Amer, Daniel, Ines, Norbert, Andreas,
Dustin and Florian - for their mutual respect and acceptance of who I
am, enabling me to continuously strive for becoming a better person.
Thank you Philipp Starzer and Berthold Roiser for jointly implementing
the proof-of-concept prototype. It was a great cooperation, resulting in
an incredible prototype representing the groundwork of this thesis.
Last of all, thank you, Alexander, for initially leading me down the
rabbit-hole into the phenomenal world of knowledge and learning,
showing me its playfulness, thereby igniting my flame to learn each
and everything.

v

P R E FA C E

This thesis originates from the project „iVolunteer - Eine Digitale Plat-
tform zur Nutzbarmachung informeller Kompetenzen im Freiwilligen-
bereich“, which is funded by the Austrian Research Promotion Agency
(FFG, ProjectNr. 871494) under the COIN-program line.
The implementation of iVolunteer was realized in cooperation with my
student collegues Philipp Starzer and Berthold Roiser. In my thesis, I
describe the conceptual part of iVolunteer used as groundwork for the
implementation, while their theses focus on certain implementation
aspects of iVolunteer.

vi

C O N T E N T S

1 introduction 1

1.1 Volunteering . 1

1.2 Challenges of Volunteer Management Systems 2

1.3 Research project - "Cooperative Activities (CrAc)" 4

1.4 Research project - "iVolunteer" 4

1.5 Problem definition . 5

1.6 Thesis outline . 6

2 requirements 7

2.1 User Roles . 8

2.1.1 Volunteer . 8

2.1.2 Help-Seeker . 8

2.1.3 Marketplace Administrator 9

2.1.4 Platform Administrator 9

2.2 Marketplace Component 9

2.2.1 Marketplace Configuration Management 10

2.2.2 Task Management 11

2.2.3 Competence Management 13

2.2.4 Resource Management 14

2.2.5 Recommendation Management 16

2.3 Cross-Marketplace Component 17

2.3.1 User Management 17

2.3.2 Multitenancy Management 17

2.3.3 Social Management 19

2.3.4 GUI Management 20

2.4 Footprint Component . 20

2.4.1 Footprint Verification Management 20

2.4.2 Footprint Synchronization Management 22

3 conceptual approach 24

3.1 Cross-Marketplace Component 25

3.1.1 User Management 25

3.1.2 Multitenancy Management 26

3.1.3 Social Management 27

3.1.4 GUI Management 29

3.2 Marketplace Component 31

3.2.1 HashableObject . 31

3.2.2 Competence Management 32

3.2.3 Task Structure Management 34

3.2.4 Task Life-Cycle Definition 36

3.2.5 Task Life-Cycle Instance 40

3.2.6 Resource Management 41

3.2.7 Recommendation Management 43

3.2.8 Achievement Management 44

3.3 Footprint Component . 46

3.3.1 Local Repository 46

3.3.2 Trust Management 48

4 system architecture 51

4.1 Architecture Components 51

vii

contents viii

4.1.1 Cross-Marketplace Component 51

4.1.2 Marketplace Component 52

4.1.3 Trustifier . 53

4.1.4 Blockchain . 54

4.1.5 Local Repository 56

4.1.6 Client . 57

4.2 Architecture Deployment 58

4.2.1 Cross-Marketplace Server 58

4.2.2 Blockchain Server 59

4.2.3 Marketplace Server 59

4.2.4 Client Computer 60

5 related work 61

5.1 VMS Feature Categories 61

5.1.1 Organization Management 62

5.1.2 Task Management 62

5.1.3 Footprint Management 63

5.1.4 Social Aspect . 64

5.2 Volunteer Management Systems 64

5.2.1 ”Freiwillig” . 64

5.2.2 Samaritan . 66

5.2.3 Volunteering Matters 67

5.3 Summary of Volunteer Management Systems 69

6 conclusion and future work 70

6.1 Conclusion . 70

6.2 Future Work . 71

6.2.1 Structural Extensions 71

6.2.2 Structural Extensions of Task Management 72

6.2.3 Behavioral Extensions 73

bibliography 75

L I ST O F F I G U R E S

Figure 1.1 iVolunteer Overview 5

Figure 2.1 Use Case Packages of iVolunteer 8

Figure 2.2 Task Management Use Cases 11

Figure 2.3 Task Configuration Overview 12

Figure 2.4 Competence Management Use Cases 13

Figure 2.5 Resource Management Use Cases 15

Figure 2.6 Recommendation Management Use Cases 16

Figure 2.7 Multitenancy Management Use Cases 18

Figure 2.8 Footprint Synchronization Management Use Cases 23

Figure 3.1 Conceptual Package Structure 24

Figure 3.2 Cross-Marketplace Component Package 25

Figure 3.3 User Management Package 26

Figure 3.4 Multitenancy Management Package 27

Figure 3.5 Social Management Package 29

Figure 3.6 GUI Management Package 30

Figure 3.7 Marketplace Component Package 31

Figure 3.8 Competence Management Package 33

Figure 3.9 Task Structure Management Package 35

Figure 3.10 Task Life-Cycle Definition Package 38

Figure 3.11 Exemplary Gateway 39

Figure 3.12 Workflow Instance Package 41

Figure 3.13 Resource Management Package 42

Figure 3.14 Recommendation Management Package 43

Figure 3.15 Achievement Management Package 44

Figure 3.16 Local Repository Package 47

Figure 3.17 Distinct Volunteer Profiles 47

Figure 3.18 Overlapping Volunteer Profiles 48

Figure 3.19 Equal Volunteer Profiles 48

Figure 3.20 Trust Management Package 49

Figure 4.1 System Architecture Components 52

Figure 4.2 Deployment diagram of the iVolunteer application 59

Figure 5.1 Impressions of ”Freiwillig” 65

Figure 5.2 Impressions of Samaritan 66

Figure 5.3 Impressions of Volunteering Matters 68

L I ST O F TA B L E S

ix

Listings x

Table 5.1 Feature comparison of volunteer management
systems . 69

L I ST I N G S

Listing 4.1 Example of a Local Repository 57

1 I N T R O D U C T I O N

Contents
1.1 Volunteering . 1
1.2 Challenges of Volunteer Management Systems 2
1.3 Research project - "Cooperative Activities (CrAc)" 4
1.4 Research project - "iVolunteer" 4
1.5 Problem definition . 5
1.6 Thesis outline . 6

In this chapter, an introduction to volunteering in general and conse-
quently to volunteer management systems with their related challenges
are presented and discussed. Afterwards, the research projects iVolun-
teer as well as its predecessor project Cooperative Activities are presented,
representing two different approaches of volunteer management sys-
tems (VMS). Finally, the problem definition is presented followed by a
short outline of this thesis.

1.1 volunteering
Volunteering is an integral part of our society in various different do-
mains - health care, education, environmental protection or disaster
relief [1]. While according to Merrill [2] the understanding of the term
volunteering can vary depending on the country and culture, it is still
always characterized by the following four features. (i) Volunteering
involves active participation or contribution in the form of time, energy
or competence and does not include just the contribution of financial
or material resources, which would rather fall into the domain of do-
nations or sponsoring. (ii) Volunteering is uncoerced, i.e., volunteers
contribute their time, energies and competences freely without com-
pulsion. (iii) Even though volunteers sometimes are compensated for
their personal and material expenses, volunteering is never primarily
motivated by any financial gain. Last, (iv) the outcome of volunteering
focuses on the common good as opposed to individual enrichment.
Since volunteers scarcely work the number of hours normal workers
do, the number of volunteers is typically measured in full-time equiv-
alent (FTE) workers [3] in order to adequately compare the volunteer
workforce. The global volunteer workforce in 2018 accounted for 109

million volunteers [4] measured in FTE workers, exceeding for example
the workforce of the Russian Federation or Japan. According to the
State of the World’s Volunteerism Report by the United Nations Volunteers
(UNV) [4] around 30% of the 109 million FTE volunteers participate
formally through an organization (e.g., Red Cross) and 70% informally for
other individuals. For Europe, the report states, that of the 29 million
FTE volunteers, 26.7% are informal FTE workers and 73.3% formal ones.

1

1.2 challenges of volunteer management systems 2

Interestingly, a similar statistic for Europe by Salamon et al. [1] suggests
otherwise with a distribution of 59% FTE formal volunteers and 31%
informal volunteers. The remaining 10 % are attributed to cooperatives
and social enterprises. A study by the Johns Hopkins University [5]
investigated 13 countries, including Canada, Israel, France, USA, Japan
and Norway, and found, that on average, volunteers make up more
than 7 % of the total workforce for all of these countries as well as that
for 6 of the 13 countries the average workforce accounts for more than
10 %. In Europe, the volunteering sector comprises volunteers equal to
almost 30 million FTE workers [1] and is therefore barely behind the
manufacturing (32 million) and trade (30.7 million) sector [1].
Furthermore, not all volunteers act similarly in their way of engaging.
Kapsammer et al. [6] show a broad spectrum of volunteers starting with
(i) Patchwork Volunteers, engaged in various different VIOs throughout
their life, to (ii) Engagement Hoppers, which spontaneously getting active
depending on their own availability and demand for volunteers and
finally, (iii) Crowd Volunteers focusing primarily on online micro-tasks
(e.g., helping and presenting solutions on stackoverflow1). Irrespective of
the way volunteers engage in, volunteering is additionally one of the
best places where informal learning takes place, i.e., learning outside of
traditional educational institutions like schools or universities, usually
resulting in the attainment of new competences, which are not only
valuable for other VIOs, but can also be used in the labor and education
market. In order to manage not only the voluntary work to optimize
processes from an economic point of view, but also exploit the potential
of volunteers, the need for adequate IT-support arose, leading to a
plethora of volunteer management systems.

1.2 challenges of volunteer management
systems

A volunteer management system brings together volunteers and vol-
unteering opportunities and allow for the scheduling, allocation and
execution of volunteering tasks and projects. It further provides means
for communication and coordination in order to encourage collabora-
tion [7]. Due to the vast amount of volunteers and VIOs, already a lot
of VMSs emerged [8], often focusing on different goals and supporting
different phases of the volunteering process (e.g., volunteer acquisition,
management or encouragement, etc.) [7]. Unlike the proposed VMS of
this thesis, most VMS favor a VIO-centric approach, trying to support
VIOs as best as possible by managing their volunteers and tasks with
the drawback, that volunteers rarely receive certification about tasks
they carried out respectively their earned competences. However, if a
VMS does allow volunteers to receive certifications, they rarely have
full access over their data since they are stored centrally at the VIO,
similar to data silos. This raises the problem, that while volunteers
perform a tremendous amount of work, they get awarded nearly noth-
ing that shows their commitment and efforts and due to the missing

1 www.stackoverflow.com

1.2 challenges of volunteer management systems 3

interoperability of existing VMSs, their gained competences can rarely
be exploited for purposes outside of the VIO, e.g., for job applications.
While the challenge of allowing volunteers to better exploit their com-
petences they earned already represents a major challenge, VMS suffer
from much more problems as Kapsammer et al. [7] found:

inhomogeneous conglomerate of resources and tasks As al-
ready stated, VMSs try to support VIOs among other things with the
allocation of tasks, involving bringing together tasks and available re-
sources, which are needed in order to carry out the task. Both, available
resources and resources a task needs are often highly inhomogeneous
and therefore an allocation between them is far from trivial. For human
resources, i.e., volunteers, the challenge is the inhomogeneity between
their competences, interests resp. personalities and the needed com-
petences and qualifications required to carry out tasks. Additionally
to human resources, also non-human resources need to be considered
during the task allocation.

configuration of tasks Due to different internal processes, the
configuration of tasks wrt. their structural and behavioural relationships
have to be considered. Structural relationships typically incorporated
the splitting of tasks into several sub-tasks, thereby building a hierar-
chical task structure, thus reducing complexity and allowing to manage
tasks better by distributing sub-tasks to various volunteers. Regard-
ing behavioral relationships, appropriate mechanisms allowing for the
utilization of temporal dependencies between tasks have to be contem-
plated, e.g., where a specific task has to be finished before another can
start.

flexible allocation allowing brokerage and negotiation Since
voluntary work is rarely paid, keeping volunteers motivated becomes a
necessity in order to inspire volunteers for certain tasks and to achieve a
sustainable level of commitment of them over time. Thus, the matching
between a volunteer’s competences as well as interests and tasks plays
a key role, especially because exact matching might not suffice. Thus, a
flexible kind of brokerage employing different matching strategies, which
not only focus on the matching but also incorporating some sort of
well-balanced effort distribution may be beneficial. Further expanding
on this idea, instead of either carrying out a task or not, a negotiation
between VIOs and volunteers could establish a more finely-grained
way of defining the contribution of a volunteer to a task.

adaptation- and motivation-oriented assessment In order to
identify potential improvements of the outcome of voluntary tasks,
appropriate assessment mechanisms along the volunteering process
are crucial. These mechanisms should not only allow an assessment
by volunteers or the VIO, but also by the beneficiaries of the voluntary
work. Moreover, the assessment should comprise different parts of the
volunteering, including the task and its outcome, volunteers themselves
(e.g., engagement, etc.), allocation of tasks, social aspects or gain of
expertise.

1.3 research project - "cooperative activities (crac)" 4

continuous evolution The last challenge is to incorporate evo-
lution mechanisms into a VMS, thus, enabling the improvement of
the voluntary process itself by the allowing adaptation of tasks (e.g.,
extending, merging and decomposing of tasks) and resources (e.g.,
incorporating achievements).

1.3 research project - "cooperative ac-
tivities (crac)"

The challenges of VMS described in the previous section where targeted
by the pre-decessor project of iVolunteer Cooperative Activities (CrAc),
which was also funded by the Austrian Research Promotion Agency
(FFG; ProjectNr. 845947) under the COIN-program line. The aim of
CrAc was the development of interdisciplinary concepts allowing for
dynamic, profile-based assignments of cooperative tasks to volunteers.
CrAc focused on continuously adapting tasks and participants to real
conditions by incorporating evaluation criteria and aims at the fol-
lowing three goals [9]. First, the support of dynamic, multi-granular
profiles for volunteers as well as for tasks, supported by information
extraction and ontology learning to structure and fill up the profiles.
Second, intelligent techniques for the matching of tasks to volunteers
by regarding similarity measures and spatio-temporal calculations of
the profiles as well as by incorporating balanced task allocation mech-
anisms. Last, CrAc employed crowd-based assessment and evolution
mechanisms leading to a dynamization of the profiles and the matching
techniques. All of the three goals should result in an increase in the
effectiveness of volunteering and stimulate creative potential within
volunteer organizations.

1.4 research project - "ivolunteer"
In contrast to its predecessor project CrAc, iVolunteer is centered around
volunteers with a clear focus on how the engagement of volunteers can
be digitized and exploited in a life-long way and proposes a digital
platform for utilizing formal and informal competences, which are ac-
quired through voluntary engagement (see Fig. 1.1). iVolunteer strives
for the following three goals. The first goal is, that volunteers should
be able to oversee and track their volunteering engagement (i.e., their
so-called ”volunteer footprint”), which will be stored in an individual
"digital volunteer pass". It should not only consist of the activities that
were carried out but also list competences a volunteer earned, respec-
tively the feedback they received. The volunteer footprint should allow
for the decentralized storage at the sole disposal of the volunteer, thus
giving the volunteers more sovereignty and responsibility for their data
and therefore directly counteracts the current trend to store data in
centralized data silos. These competences are then used to support
further competence acquisitions and applications at iVolunteer Market-
places, which represent the second goal of iVolunteer. These iVolunteer

1.5 problem definition 5

Marketplaces bring together volunteers and volunteering opportunities
by coordinating offers and needs between VIOs and volunteers. iVol-
unteer marketplaces are generally independent of any certain VIO,
thus allowing also informal volunteering to take place by incorporating
informal volunteers and their help-seeking people directly. Neverthe-
less, VIOs should also have the possibility to participate by operating
one or more marketplaces. Therefore, iVolunteer supports both, formal
volunteering for an organization and informal volunteering directly
for other persons. The third goal of iVolunteer is to integrate volunteer
encouragement by supporting gamification mechanisms in order to lower
entry barriers into volunteering and maximize life-long engagement.

Figure 1.1: iVolunteer Overview

1.5 problem definition
This thesis is situated in the realm of the iVolunteer project, contribut-
ing mainly to the first two research goals of iVolunteer, the iVolunteer
Footprint and the iVolunteer Marketplaces. In particular, a conceptual ap-
proach and a corresponding system architecture tackling both of them
should be developed and parts of them also implemented by means of a
proof-of-concept prototype. This concept should generally allow for the
management of decentralized iVolunteer Marketplaces, on which volun-
teering opportunities and volunteers should be coordinated. Volunteers
should be able to participate in these marketplaces and thereby devel-
oping their volunteer footprint, which should be stored decentralized
at the sole disposal of the volunteer. Furthermore, volunteers should be
able to use their volunteer footprint across multiple marketplaces. These
three aspects which are in the focus of this thesis - decentralized MPs
(i.e., VIO-independent) , decentralized footprint storage (i.e., counteract-
ing Data Silos) and decentralized footprint exploitation (i.e., cross-MP
and beyond) - characterize our notion of a "Decentralized VMS" being
in the center of iVolunteer. The implementation of the proof-of-concept
prototype, which has been realized together with my colleagues Philipp
Starzer and Berthold Roiser is described in more detail in their thesis

1.6 thesis outline 6

works. In this thesis only a glimpse of the implementation is given,
while focusing especially on the conceptual view of the proposed VMS.

1.6 thesis outline
Based on the described vision of iVolunteer and the problem definition
given, this thesis is structured as follows. Chapter 2 introduces the
requirements of iVolunteer, which further expand on the brief problem
definition given above. The requirements represent the foundation of
the conceptual approach in Chapter 3 and the system architecture in Chapter
4. In Chapter 5, a comparison of iVolunteer with existing VMSs is
conducted, showing the areas where typical VMSs have drawbacks and
where iVolunteer shines. Finally, in Chapter 6 the conclusion respectively
the future work are discussed.

2 R E Q U I R E M E N T S

Contents
2.1 User Roles . 8

2.1.1 Volunteer . 8
2.1.2 Help-Seeker . 8
2.1.3 Marketplace Administrator 9
2.1.4 Platform Administrator 9

2.2 Marketplace Component 9
2.2.1 Marketplace Configuration Management 10
2.2.2 Task Management 11
2.2.3 Competence Management 13
2.2.4 Resource Management 14
2.2.5 Recommendation Management 16

2.3 Cross-Marketplace Component 17
2.3.1 User Management 17
2.3.2 Multitenancy Management 17
2.3.3 Social Management 19
2.3.4 GUI Management 20

2.4 Footprint Component . 20
2.4.1 Footprint Verification Management 20
2.4.2 Footprint Synchronization Management 22

In this section, the emerged user roles are presented, followed by a
description of the requirements for each core component of iVolunteer
(see Fig. 2.1) - (i) the marketplace component, (ii) the cross-marketplace com-
ponent and (iii) the footprint component. Within iVolunteer, each formal
resp. informal volunteering organization should operate one dedicated
marketplace component, serving as their very own VMS and representing
the organization’s marketplace, which coordinates between demand
and supply of voluntary work and performing the bonding between
help-seekers and volunteers. The cross-marketplace component serves as
mediator between the volunteers and the marketplace components,
allowing for their initial registration as well as constituting as central
communication point between users and the other two components, i.e.,
the marketplace components and the footprint component. Last, the footprint
component manages the volunteering footprint by giving volunteers full
sovereignty while still guaranteeing, that it, nevertheless, can be verified
for correctness (i.e., whether the entries of the volunteer footprint can
be trusted to be true).

7

2.1 user roles 8

Help-Seeker

Volunteer Marketplace
Administrator

Platform
Administrator

Marketplace
Component

Cross-
Marketplace
Component

Footprint
Component

Figure 2.1: Use Case Packages of iVolunteer

2.1 user roles
Within iVolunteer, four user roles emerged, representing the different
actors for the use cases presented in the following sections. The user
roles within iVolunteer are the (i) volunteer, who carries out tasks
managed by (ii) help-seekers on the marketplaces. Each marketplace
component of iVolunteer is managed by (iii) marketplace administrators,
while the cross-marketplace component is operated by the (iv) platform
administrator. In addition to user roles, a permission system should be
implemented enabling a fine-grained configuration of which user is
able to perform which functionality.

2.1.1 Volunteer

Within iVolunteer, volunteers play the central role by offering not only
their human resources (i.e., time or competences), but also additional
non-human resources (e.g., tools, vehicles) in order to help others by
performing tasks mediated on certain marketplaces (see Sect. 2.2). In
order to participate in a marketplace, an according subscription is
necessary, before being able to carry out tasks as described in Sect. 2.2.2
or synchronizing their volunteer footprint with the marketplace (see
Sect. 2.4.1).

2.1.2 Help-Seeker

Help-seekers are the counter-part to volunteers within iVolunteer. While
volunteers carry out voluntary tasks, help-seekers are responsible for
creating and managing them on the marketplace component. Similar to
volunteers, help-seekers must be able to subscribe to marketplaces in
order to operate on them. Furthermore, help-seekers must be able to
create tasks and manage them (e.g., assign volunteers to tasks, start and
finish tasks; see Sect. 2.2). Since the management of tasks can be critical
and involve disclosed information about participants, organizations
might want to control, whether help-seekers can freely participate in

2.2 marketplace component 9

their marketplaces or not. Especially for formal volunteering, VIOs
might want to refrain help-seekers outside of the organization to join.
Therefore, iVolunteer should support a mechanism to allow or disallow
help-seekers to join, by setting adequate subscription rules, which are
further explained in Sect. 2.2.1.2.

2.1.3 Marketplace Administrator

The marketplace administrator is responsible for setting up, managing and
customizing a marketplace component. The user who initially registers a
new marketplace component at the cross-marketplace component will auto-
matically become its marketplace administrator. Besides choosing the
name and description of the marketplace, marketplace administrators
have three other configuration possibilities. First, they must be able to
set subscription rules (see Sect. 2.2.1.2) for users, stating whether users
are allowed to subscribe to a marketplace as volunteer or help-seeker.
Second, marketplace administrators should be able to define available
task life-cycles (see Sect. 2.2.2.1), handling how tasks are processed by
defining the steps a task goes through the user interactions of help-
seekers and volunteers that are responsible for the different steps of
the task life-cycle. After the marketplace administrator configured the
desired set of task life-cycles, help-seekers can create tasks attributed
with one of these task life-cycles. Third, marketplace administrators
should be able to configure the set of competences (see Sect. 2.2.3) that
are needed at the respective marketplace. This configuration possibility
is not least valuable since organizations often not only utilize general-
purpose competences (e.g., teamwork), but also employ domain-specific
(e.g., Extinguish Fire) or organization-specific ones (e.g., radio course
of the Fire Brigade).

2.1.4 Platform Administrator

The platform administrator is responsible for managing the cross-marketplace
component and its infrastructure (see Sect. 4.1.1). The platform adminis-
trator should be able to register new marketplaces at the cross-marketplace
component, thereby publishing it and enabling users to subscribe to them
as volunteers and help-seekers. Furthermore, the platform administra-
tor should be able to update and delete already existing marketplaces
from the cross-marketplace component.

2.2 marketplace component
The marketplace component should offer the possibility to coordinate
between supply and demand for volunteering by employing a highly
configurable task management, handling volunteering tasks and the
allocation of volunteers to tasks. In order to find appropriate tasks
for volunteers and vice versa, a recommendation management is needed,
recommending tasks based on the similarity between a volunteer’s
competences and requirements of tasks as well as by considering other
volunteer or task-specific preferences like time or priority. In order to

2.2 marketplace component 10

handle competences, a competence management is needed, covering both,
formal and informal competences as well as employing competence
derivation mechanisms in order for volunteers to receive these compe-
tences based on certain task fulfillments. To further complement tasks,
a resource management should allow for the management of human and
non-human resources within a VIO, enabling users to claim resources
for the timespan of tasks. Furthermore, as previously discussed, mar-
ketplaces should be able to be configurable leading to the marketplace
configuration management.

2.2.1 Marketplace Configuration Management

The marketplace configuration management is responsible for allowing
marketplace administrators to configure their marketplace component.
In general, the configuration possibilities for marketplaces could be
numerous and would therefore go far beyond the scope of this thesis.
For this thesis, the marketplace configuration management has two
main responsibilities - (i) the management of the marketplace formality
type and (ii) the handling of subscription rules.

2.2.1.1 Marketplace Formality Type

As already mentioned, there has to be made a distinction between for-
mal and informal volunteering, directly influencing the user structure of
a marketplace and the functionality they are able to use. The main differ-
ence between the two types of volunteering is, that formal volunteering
is generally done for organizations, while informal volunteering is done
for individuals (e.g., helping a neighbour). Since iVolunteer should sup-
port both, formal and informal volunteering, appropriate mechanisms
are needed to fulfill the requirements for both types of volunteering.
In essence, the difference is, that on marketplaces operated by VIOs -
called formal marketplaces - help-seekers are generally employees of
the respective VIO, while on informal marketplaces (i.e., for informal
volunteering), anyone should be able to be a help-seeker. Therefore,
appropriate mechanisms (i.e., subscription rules) are required to restrict
the registration of help-seekers on formal marketplaces, while allowing
all users to subscribe to an informal marketplace as both, volunteer and
help-seeker.

2.2.1.2 Subscription Rules

In order to not only allow users to subscribe to a marketplace as vol-
unteer or help-seeker based on the marketplace formality type (i.e.,
formal or informal marketplace), but to enable marketplace adminis-
trators to adapt the preconditions to subscribe to a marketplace in a
more fine-grained way, subscription rules should be introduced. These
subscription rules should not only restrict access for help-seekers, but
also for volunteers allowing a marketplace to be publicly accessible or
private for volunteers. For example, the subscription rule could state,
that help-seekers can only subscribe to a marketplace after they received
an invitation e-mail.

2.2 marketplace component 11

2.2.2 Task Management

The task management (see Fig. 2.2) is responsible for supporting ways
to manage and carry out volunteering tasks. Since VIOs have their very
own processes of handling volunteering tasks, a highly configurable
task management needs to be integrated into the marketplace compo-
nent allowing them to realize and integrate them within iVolunteer. In
the following sections, requirements regarding task management are
presented, which are inspired by Mundbrod and Reichert [10], [11],
resp. [12], starting with the task configuration, i.e, how tasks can be
adapted to the needs of VIOs, followed up by the incorporation of task
templates in order to simplify the task creation process and finishing
with the functionality to generate tasks and task templates from existing
tasks and templates in order to simplify the process of creating tasks
and task templates.

Task Management

Manage Task Configure Task
<<includes>>

Help-Seeker

Generate Task

<<includes>>

Generate Task
Template

Configure Task
Template

<<includes>>

Manage Task
Template

<<includes>>

Marketplace
Administrator

Figure 2.2: Task Management Use Cases

2.2.2.1 Task Configuration

Two dimensions of task configuration can be distinguished - (i) intra
vs. inter and (ii) structural vs. behavioural (see Fig. 2.3). The intra-
configuration comprises all configuration possibilities of a single task,
while the inter-configuration covers configuration possibilities of a set
of tasks. A structural configuration includes the change of the structure
of one task or the structure of a set of tasks, while a behavioural
configuration means a change of the execution of a single task or a set
of tasks.

2.2 marketplace component 12

In
tr

a
In

te
r

BehaviorStructure

Task Life-
Cycle

Behavioral
Relationships

Task
Properties

Structural
Relationships

Figure 2.3: Task Configuration Overview

Because of these two dimensions, four possible variations of task con-
figurations emerge:

• Task Properties
It should be possible, that tasks can be adaptable wrt. their inter-
nal structure, i.e., their properties. There should be a basic set of
properties available for each task, e.g., name, description, start time
or end time. Furthermore, it should be possible to add additional
properties to tasks in order to expand on the basic set of proper-
ties. An example of additional properties would be, whether a
driver’s license is required or not. In order to make these prop-
erties as adjustable as possible, not only the name of properties
should be customizable, but also its respective value type, e.g.,
boolean, floating point number or character string. Task properties
should be used as a basis to search for tasks, respectively for the
matching between volunteers and tasks.

• Task Life-Cycle Configuration
The main requirement for the intra-task configuration besides
task properties is to manage how tasks are processed and exe-
cuted, called configuration of the task life-cycle [10]. Task life-cycles
are enforced by task workflows, controlling the states a task runs
through and evaluating, which actions are available at a certain
state in the task life-cycle. A task workflow is a graph consisting
of states and transitions, depicting the states a task can reach and
the transitions in-between. A set of pre-defined states and transi-
tions should be available, including create task, publish task, assign
task and finish task. Furthermore, there should be a possibility to
define new custom states and transitions in order to support the
different volunteering task processes of VIOs. A task life-cycle
should also be able to incorporate the sequential and parallel
execution of these pre-defined and user-defined states.

• Structural Task Relationships
iVolunteer should incorporate structural task relationships, revolv-
ing around combining tasks together and forming compositions
of tasks. In general, hierarchical structures are desirable, since
they can depict task compositions with parent-child relationships.
Hierarchically structured tasks form a tree, where the root-task
is often times the overarching project the tasks belong to, in-
termediate nodes are grouping tasks, and leaves are executable
tasks.

2.2 marketplace component 13

• Behavioral Task Relationships
Last, behavioral task relationship should be incorporated, relating
to modelling behavioral interdependencies between tasks. For
example, one task has to be performed before another can start
(i.e., temporal relationship), which can be necessary due to infor-
mation dependencies (the result of one task is the prerequisite of
another) [13].

2.2.2.2 Task Templates

Task templates serve as templates for tasks, in order to quickly create
recurring tasks. Similar to tasks, task templates also comprise intra-
task configuration possibilities, i.e., (i) task properties and (ii) life-cycle
configuration, but do not have any inter-task configuration possibilities,
because they are neither structurally nor behaviourally dependent upon
other task templates or tasks.

2.2.2.3 Task & Task Template Generation

It should not only be possible to generate tasks from task templates, but
rather both, tasks and task templates, should be generable from existing
tasks as well as from task templates. In both cases, the existing intra-
task configuration, i.e., task properties and task life-cycle configuration
should be taken over to the generated task respectively task template.

2.2.3 Competence Management

As already stated in Chapter 1, volunteering is regarded as a unique
opportunity for informal learning, thereby supporting the acquisition
of new competences, respectively the refinement of already acquired
ones. Thus, not only formal competences acquired through education
and training courses, but also informal ones acquired through fulfill-
ing volunteering tasks and working in a volunteering team should be
integrated into iVolunteer. It has to be emphasized, that competences
within iVolunteer should not only be usable at one specific marketplace,
but rather volunteers should be able to transfer the competences from
one marketplace to other ones and utilize them there as well. This
requirement is further described in Sect. 2.4. The competence manage-
ment (see Fig. 2.4) of the marketplace component should implement
the following use-cases:

Competence
Management

Volunteer Marketplace
AdministratorManage available

Competence

Update Competence

Manage Profiling
Mechanism

<<extends>>

Figure 2.4: Competence Management Use Cases

2.2 marketplace component 14

• Manage available competences
The marketplace component should come with a pre-defined set of
competences used within iVolunteer, which should be based on
already existing competence models and ontologies. A marketplace
administrator should be able to adapt these existing competences
(e.g., adapt possible proficiency levels) as well as create new ones.
This is especially necessary because there exist many domain-
specific or organization-specific competences, which VIOs should
be able to incorporate into iVolunteer.

• Manage Profiling Mechanism
The marketplace administrator should be able to change the profiling
mechanism, deciding how competences are awarded, updated or
taken away. The profiling mechanism should be adaptable from
simple rules with pre-conditions, which have to be fulfilled in
order to receive the competence, to fully-fledged machine-learning
algorithms, which learned how these competences should be
awarded. This mechanism should not only be available for formal
competences, but also for informal ones, for which the definition
of the pre-conditions is much harder to grasp. For example, which
qualification is enough to decide whether a volunteer receives the
competence "team player".

• Update Competences
Generally, there should be two ways volunteers can update their
competences, i.e., receive new competences, change existing com-
petences (e.g., reaching a higher proficiency level) as well as lose
already acquired ones. An example where volunteers could lose
competences is in the domain of paramedics of the Red Cross,
requiring them to have to recertify their defibrillator usage each
year.
The first way, how volunteers should be able to update their com-
petences is, that they should be able to develop them based on
their performance of volunteering tasks as well as on interactions
within iVolunteer (i.e., with other volunteers and help-seekers).
The second way to update the competences is to get credited for
already existing competences acquired from other organizations
like schools, jobs or other VIOs. Therefore, adequate mechanisms
are needed for volunteers to be able to obtain these competences
within iVolunteer by showing ample qualification certificates from
these other organizations, e.g., a driver’s license. The update of
competences should be done automatically by the respective pro-
filing mechanism, deciding whether volunteers receive or lose
competences.

2.2.4 Resource Management

Another major requirement of the marketplace component closely cou-
pled with task management is resource management (see Fig. 2.5), al-
lowing for the management of resources contributed by the VIO and
its volunteers. These resources can be claimed and used during the
execution of tasks. Resources can be distinguished into two types -

2.2 marketplace component 15

human and non-human resources - both of which should be usable
within iVolunteer. Human resources generally refer to the time and
competences volunteers contribute, while non-human resources can
be any objects brought in by the VIO or the volunteers, which can
be utilized throughout the execution of volunteer tasks. Examples for
non-human resources are chairs or benches, which can be provided
for a certain task. The resource management contains the following
use-cases:

Resource
Management

Help-Seeker

Volunteer Marketplace
Administrator

Claim
Resource for

Task

Claim
Resource for

Task Template

Manage
Resource

Figure 2.5: Resource Management Use Cases

• Manage Resource
It should be possible to add human and non-human resources
to the marketplace component. Each resource should contain at
least properties describing name, type (i.e., human or non-human
resource) and owner. Furthermore, concepts regarding the avail-
ability of resources should be considered, especially because non-
human resources often can only be used by one task at the same
time. After a resource was created within iVolunteer, the owner
of the resource should be able to change or remove it.

• Claim Resource for Task
After resources are initially added, it should be possible to claim
them for certain tasks and their defined time period. It should
not be possible to claim a resource twice at the same time, except
when the resource is explicitly defined to be used concurrently by
several tasks (e.g., software).

• Claim Resource for Task Template
Furthermore, it should be possible to append resources to task
templates. This process should be identical to the appending of
a resource to a task, except that the availability of the resources
is not needed to be considered, because task templates have no
defined period of execution. The availability of the resource has
to be checked, when new tasks are generated from task templates
(see Sect. 2.2.2.3).

2.2 marketplace component 16

2.2.5 Recommendation Management

In order to achieve better coordination between demand and supply of
voluntary work, a recommendation mechanism (see Fig. 2.6) primarily
on the basis of a volunteer’s competences and a task’s requirements
is required. Additionally, further circumstances like the volunteer’s
temporal and spatial constraints wrt. the task should be taken into
consideration. This would allow for a better fit between tasks and
volunteers and therefore may increase a volunteer’s motivation and
contribution. There should be two ways to receive task recommenda-
tions - (i) recommendations from the matching algorithm of iVolunteer
and (ii) task suggestions from other users within iVolunteer.

Recommendation
Management

Volunteer

Receive
Recommendation

Receive Suggestion

Suggest Task

Figure 2.6: Recommendation Management Use Cases

• Receive Recommendation
The first use-case of recommendation management revolves around
volunteers receiving task recommendation based on their com-
petences and preferences matched against the requirements of
tasks. In order to find appropriate fits between tasks and volun-
teers, matching algorithms of recommender systems should be
employed, additionally incorporating interests of volunteers, as
well as temporal and spatial information of both, volunteers and
tasks.

• Receive Suggestion
In addition to receiving computed recommendations from the
iVolunteer platform, it should be possible for volunteers to receive
suggestions from other users, i.e., other volunteers or help-seekers.
These suggestions could range from last-minute requests from
help-seekers, because they quickly need another volunteer for a
certain task to friends suggesting tasks to each other in order to
carry them out together.

• Suggest Task
In order for volunteers to receive suggestions, it must be possible
for users to suggest tasks to them in the first place.

2.3 cross-marketplace component 17

2.3 cross-marketplace component
The cross-marketplace component should represent the central commu-
nication point between users and the other two components, i.e., mar-
ketplace component as well as the footprint component. The first main
requirement of the cross-marketplace component is to handle the dif-
ferent types of users described in Sect. 2.1, called the user management
(see Sect. 2.3.1).The second requirement is to establish multitenancy
(Sect. 2.3.2) by enabling the registration of new and the management
of existing marketplace components, thereby allowing interoperability
of the marketplaces under one common platform while still ensuring,
that the data of each VIO (i.e., through separate marketplace databases)
is separately stored from each other. The third major requirement
revolves around managing the social management (Sect. 2.3.3) of iVol-
unteer, thereby allowing users to communicate with each other across
the boundaries of the marketplaces. Finally, the last requirement of
the cross-marketplace component is to allow users to configure their
dashboard, which is described by the GUI management (Sect. 2.3.4).

2.3.1 User Management

Since iVolunteer should manage personal data of users, especially of
volunteers and help-seekers, means for authentication need to be in
place to protect unauthorized access to the data. Therefore, all users -
volunteers, help-seekers, marketplace administrators and platform ad-
ministrators - are required to be logged in before they should be able to
use it. Thus, an appropriate registration and authentication mechanism
has to be provided. Since iVolunteer is a distributed application, not
only the authentication at the cross-marketplace component has to be
managed, but also the authentication at the marketplaces. Furthermore,
since it would be laborious for users to register respectively authenticate
at the cross-marketplace component and all their marketplaces sepa-
rately, one common single sign-in authentication should be implemented,
which authenticates users at both, the cross-marketplace component
and their marketplaces using only a single registration, respectively
login. This should minimize the effort for users, subscribed to several
marketplaces at once. To assure, that access to the cross-marketplace
component and the marketplace components is authenticated, a secure
token technology with validation date should be applied, ensuring a
platform wide single sign-in authentication.

2.3.2 Multitenancy Management

iVolunteer should support multiple formal and informal volunteering
organizations independently of each other by allowing them to register
and manage their very own marketplace at the cross-marketplace com-
ponent. In order for volunteers and help-seekers to use the marketplace
of a particular organization, they need to subscribe to it and thereby
express their wish to contribute to that organization. The requirement
of multitenancy (see Fig. 2.7) is formulated in the following features:

2.3 cross-marketplace component 18

Multitenancy
Management

Help-Seeker

Register
Marketplace

Volunteer Marketplace
Administrator

Platform
Administrator

Update
Marketplace

Delete
Marketplace

Subscribe
Marketplace

Unsubscribe
Marketplace

Search
Marketplace

<<extends>>

Figure 2.7: Multitenancy Management Use Cases

• Register Marketplace
In order to be able to use a marketplace within iVolunteer, an orga-
nization has to register their marketplace at the cross-marketplace
component, thereby publishing the marketplace to volunteers
and help-seekers enabling them to subscribe and contribute by
carrying out tasks for the respective organization.

• Update Marketplace
Once a marketplace is registered at the cross-marketplace compo-
nent, it should be possible to change the details of the marketplace
like name or location.

• Delete Marketplace
It should be possible to delete registered marketplaces and thereby
remove them from iVolunteer, making it unavailable for volunteers
and help-seekers to join it anymore. All volunteers and help-
seekers, that already joined the marketplace beforehand will no
longer be able to operate on the marketplace through the cross-
marketplace component.

• Search for Marketplace
Users should be able to search for registered marketplaces by
entering keywords, which should be matched against the name
of the marketplace, its respective organization operating the mar-
ketplace, the domain of the organization or properties of tasks
published at the marketplace.

• Subscribe to Marketplace
Once a marketplace is registered at the cross-marketplace compo-
nent, volunteers and help-seekers should be able to subscribe to
them as long as the respective subscription rules allow it (see Sect.
2.2.1.2).

• Unsubscribe from Marketplace
After users joined a marketplace, they, of course, should be al-
lowed to leave it again, thereby deleting their data (e.g., published
competencies) from the respective marketplace. After users have
unsubscribed, they should no longer be able to access the market-
place (e.g., search and register for tasks) without subscribing to

2.3 cross-marketplace component 19

it again. Nevertheless, earned achievements (e.g., competences)
must still be usable if they were synchronized before by utilizing
the mechanisms of the footprint component (see Sect. 2.4).

2.3.3 Social Management

Additionally to multitenancy and thus following for the management
of marketplace components, the cross-marketplace component is also
responsible for social management within iVolunteer. Social management
should provide opportunities to have social relationships of different
users across multiple marketplaces and therefore represents an essential
cornerstone of iVolunteer since these social relationships are one of the
main reasons, why volunteers are actively engaged [14] and is thus
of utmost importance in order to keep them motivated. Social man-
agement is divided into the following categories - (i) social relationship
management, (ii) social awareness management and (iii) social communica-
tion management - each of them forming an essential requirements for
iVolunteer.

2.3.3.1 Social Relationship Management

Social relationship management should consist of mechanisms for mod-
elling and integrating social relationships between users (i.e., other
volunteers or help-seekers). The social relationship management should
at least contain a dedicated friend system as well as an integration of a
group system. The friend system serves as the stepping stone for the re-
alization of further social interactions (cf. below). In general, the friend
system should either support bi-directional relationships, where both
users have each other listed as a friend or uni-directional relationships,
where one user can follow another user, without having to follow them
as well. Additionally to friends, groups enable users to build a com-
munity together with other users. Groups should be configurable to
either be private or public, meaning that the membership to the group
is either restricted or not.

2.3.3.2 Social Awareness Management

Social awareness management should be responsible for giving users
information (i.e., making them aware) about upcoming events or activ-
ities of friends. In order to achieve awareness, an activity feed in the
form of a timeline should be incorporated into iVolunteer. The timeline
gives users a chronological history of their friend’s activities, posts,
upcoming events, earned achievements as well as information related
to their volunteering tasks, like when a task was finished. Each entry
of the timeline should allow for comments in order to further social
intercourse.

2.3.3.3 Social Communication Management

The social communication management should offer two different commu-
nication possibilities among users - user-chat and the group-chat. While

2.4 footprint component 20

the user-chat allows only for the bi-directional chat between two users,
the group-chat broadcasts the messages to all participants of the group.

2.3.4 GUI Management

The GUI management supports users of iVolunteer with additional
configuration possibilities, when it comes to their user interface. While
these configuration possibilities could be numerous, like the selection
of different fonts, colors, location and size of user interface elements
(UI elements), this thesis should only focus on the configuration of
the dashboard, thereby enabling users to create their own user-defined
dashboards with their preferred UI elements. Users should be able to
select them from a predefined set of UI elements and freely place them
in their preferred location. Furthermore, users should be able to create
multiple dashboards with different UI element placements.

2.4 footprint component
The footprint component should be responsible for allowing volunteers
and marketplaces to utilize the volunteer footprint, which should record
activities carried out by a volunteer throughout their volunteering life
in terms of an individual digital volunteering pass [6]. Examples of what
a volunteer footprint can comprise are (i) all tasks a volunteer carried
out, (ii) all formal and informal competences they acquired, (iii) their
feedback as well as feedback they receive (e.g., feedback regarding
tasks, projects, etc.) and (iv) social interactions they have with other
volunteers or help-seekers. Typically in VMSs, volunteer footprints are
stored centrally at large data centers leading to huge data silos and
users, which often don’t know what information is stored about them.
To counteract this trend of data centralization and privacy infringe-
ments, iVolunteer should store the volunteer footprints decentralized
for the exclusive disposal of the volunteer in the so-called local reposi-
tory. Since volunteers are empowered by this decentralization and could
therefore alter their volunteer footprint at will, appropriate verification
mechanisms are required, allowing for the checking of whether entries
of the volunteer footprint are indeed correct. The footprint component
is therefore divided into two packages - (i) the footprint verification man-
agement, responsible for verifying footprint entries and (ii) the footprint
synchronization management, covering the synchronization mechanisms
between marketplaces and volunteers.

2.4.1 Footprint Verification Management

The footprint verification management should provide mechanisms to
verify volunteer footprint entries and check whether they are valid or
not. Due to the empowerment of volunteers by having full leverage
over their data, adequate verification methods are needed in order to
detect, whether footprint entries provided by volunteers to a market-
place are valid or not. For example, volunteers could append additional
competences in their volunteer footprint, which must be detected as

2.4 footprint component 21

invalid. Otherwise no marketplace could trust the footprint of volun-
teers, thus rendering the volunteer footprints useless. The footprint
verification management therefore should have two main focal points -
(i) the warranty to store each footprint entry at a trusted place besides
the local repository of volunteers and (ii) using this second storage of
the footprint entries for the verification of footprint entries from the
local repository. This second storage of the footprint entries should only
be used for the verification of footprint entries and will therefore be
called verification storage from now on. The verification storage has to
fulfill the following two characteristics - (i) trustability, (ii) immutability -
and has to enforce the (iii) verifiability and (iv) information obfuscation of
footprint entries.

2.4.1.1 Trustability

As described earlier, the verification storage should be used for verifica-
tion of footprint entries, thus establishing trust between volunteers and
marketplaces whenever volunteers try to synchronize footprint entries
(e.g., acquired competences) to marketplaces. In order to establish this
trust, not only the verification mechanism but also the verification stor-
age itself has to be trusted, otherwise the whole verification mechanism
could not be trusted at all.

2.4.1.2 Immutability

The verification storage must guarantee the immutability of all con-
tained footprint entries, i.e., it should not be possible to change an entry
once it exists in the verification storage. By enforcing immutability of
the footprint entries, the verification mechanism can be assured, that
the footprint entries of the verification storage can be trusted to be true
and therefore achieves a similar goal than the previously described
characteristic trustability. The main difference between them is, that
immutability guarantees, that existing footprint entries are not changed,
while trustability assures that no new footprint entries are added to the
verification storage, that are valid.

2.4.1.3 Information Obfuscation

Since the volunteer footprint, which contains critical personal infor-
mation about volunteers is stored in the verification storage, adequate
measures to save and protect the data from unauthorized access have
to be implemented. But rather than authorizing, which information
can be accessed by which user of the verification storage, obfuscation
mechanisms should be applied, while still guaranteeing verifiability (cf.
below). Since the verification storage has to be publicly available in
order to guarantee, that anyone can verify footprint entries, informa-
tion obfuscation secures that the information stored is not maliciously
exploitable by anyone except for verification purposes.

2.4.1.4 Verifiability

Since the verification storage is mainly used to verify, whether footprint
entries from the local repository of volunteers are valid or not, it has

2.4 footprint component 22

to guarantee, that the verification mechanism can be applied to its
entries, even though the previously explained information obfuscation
characteristic will make the entries unreadable. In order to achieve both,
information obfuscation and verifiability, one-way hashing algorithms
should be applied to the entries of the verification storage to obfuscate
them. In order to verify footprint entries from the local repository, they
have to be hashed with the same algorithm and compared with entries
from the verification storage. If an entry in the verification storage can
be found, the respective footprint entry of the local repository is valid,
respectively invalid, if the comparison is without result.

2.4.2 Footprint Synchronization Management

The footprint synchronization management (see Fig. 2.8) is responsible for
the synchronization of footprint entries between a volunteer’s local
repository and the marketplaces and incorporates footprint verification
from the footprint verification management (see Sect. 2.4.1). In order
to clarify the terminology of the different locations, where footprint
entries can be synchronized to, the volunteer footprint of the local
repository will be called private volunteer footprint, while the volunteer
footprint a marketplace can use will be called public volunteer footprint.
Since volunteers can not only be subscribed to several marketplaces
at once, but also can share different parts of their private volunteer
footprint with each marketplace, there must exist one public volunteer
footprint for each marketplace a volunteer is subscribed to. Therefore,
footprint entries can exist in three different places - (i) in the local
repository, (ii) at a marketplace and (iii) in the verification storage.
While the footprint synchronization management only manages the
synchronization between the first two, i.e., between the local repository
and the marketplaces, it still incorporates the verification mechanisms
using the obfuscated footprint entries from the verification storage.
Since it is solely up to the volunteers to synchronize between their
private and public volunteer footprints, both of them can contain either
the same footprint entries, have overlapping entries or have diametri-
cally different footprint entries. In order to support the synchronization
between private and public volunteer footprints, three mechanisms
must be implemented - (i) downloading footprint entries from the public
volunteer footprint to the private one, (ii) publishing footprint entries
from the private volunteer footprint to one public footprint and (iii)
revoking footprint entries from one public footprint.

2.4 footprint component 23

Footprint
Synchronization Management

Volunteer

Download
Footprint Entry

Publish
Footprint Entry

Revoke
Footprint Entry

Verify
Footprint Entry

<<includes>>

Help-Seeker

Figure 2.8: Footprint Synchronization Management Use Cases

• Download Footprint Entry
Once a marketplace issues a footprint entry to volunteers, they
can synchronize it from the public volunteer footprint into their
private volunteer footprint. Once it is synchronized, the volunteer
can choose to verify it, respectively publish it to other market-
places (cf. below).

• Publish Footprint Entry
Publishing a footprint entry from the private footprint to a public
footprint makes it accessible to the respective marketplace and
allows it to use the entries, e.g., utilizing the footprints for task
recommendation etc.

• Revoke Footprint Entry
In order to signal a marketplace to no longer utilize a footprint
entry, volunteers can revoke it from the public footprint. The
footprint entry will then be deleted from the respective public
footprint.

3 C O N C E P T UA L A P P R OA C H

Contents
3.1 Cross-Marketplace Component 25

3.1.1 User Management 25
3.1.2 Multitenancy Management 26
3.1.3 Social Management 27
3.1.4 GUI Management 29

3.2 Marketplace Component 31
3.2.1 HashableObject . 31
3.2.2 Competence Management 32
3.2.3 Task Structure Management 34
3.2.4 Task Life-Cycle Definition 36
3.2.5 Task Life-Cycle Instance 40
3.2.6 Resource Management 41
3.2.7 Recommendation Management 43
3.2.8 Achievement Management 44

3.3 Footprint Component . 46
3.3.1 Local Repository 46
3.3.2 Trust Management 48

Following up on the requirements of the proposed VMS iVolunteer as
stated in Chapter 2, an explanation of the conceptual approach will be
given. For each main component stated in the last chapter, one or more
packages will be derived and discussed in the following sections (see
Fig. 3.1).

Cross-
Marketplace
Component

Marketplace
Component

Footprint
Component

<<access>><<access>>

<<access>>

Figure 3.1: Conceptual Package Structure

24

3.1 cross-marketplace component 25

3.1 cross-marketplace component
The responsibilities of the cross-marketplace component were already
briefly explained and it is accordingly divided into four packages as
stated in Sect. 2.3 - user management, multitenancy management, social man-
agement and GUI management which will be described in the following
(see Fig. 3.2).

CrossMarketplaceComponent

Multitenancy
Management

Social
Management

<<access>>

User
Management

<<access>>
GUI

Management

<<access>>

Figure 3.2: Cross-Marketplace Component Package

3.1.1 User Management

The user management package (see Fig. 3.3) provides registration and
login capabilities for Users with different UserRoles (i.e., volunteers, help-
seekers, marketplace administrators and platform administrators; see Sect.
2.1) not only to the general management platform (Sect. 2.3) but also to all
subscribed marketplaces (Sect. 2.2).

3.1.1.1 User

The class User is identifying a person within iVolunteer and is there-
fore necessary for authentication purposes including the registration
and login into iVolunteer. Each person only needs to register once at
the cross-marketplace component with an email address and password,
which form the user’s authentication credentials. Furthermore, a user
can select a username, which will be displayed throughout the system.
After the registration is successful, the user is able to log in by using
their respective authentication credentials. In the future, it is considered
to allow for a range of different kinds of registration types other than
e-mail (see Sect. 6.2.3.5) and can vary from anonymous authentication
without any usage of username or password, to authentication with
a legal document (e.g., driver’s license or passport). These different
authentication mechanisms would allow for a classification of users into
different levels of credibility. For example, anonymous users would not
be very credible, in contrast to users registered with a legal document.

3.1 cross-marketplace component 26

UserManagement

User

- username
- email
- password
- firstName
- lastName

*

1

MultitenancyManagement::
Marketplace

1

* <<enumeration>>
UserRole

Volunteer
Help-Seeker
Marketplace Administrator
Platform Administrator

MarketplaceUser

- userRole: UserRole

Figure 3.3: User Management Package

3.1.1.2 UserRole

Within iVolunteer, users can be attributed four different UserRoles - vol-
unteers, help-seekers, marketplace administrators and platform administrators,
which were already explained in Sect. 2.1. A user is not limited to only
one UserRole, both globally across all marketplaces and within one
marketplace, meaning that a user can be volunteer and help-seeker at
multiple marketplaces as well as at the same marketplace at the same
time. Whether a user can have more roles or not, is solely incumbent
upon the subscription rules a marketplace imposes (see Sect. 3.1.2.1).
The assignment of which user was allotted which role on one specific
marketplace is apparent in the class MarketplaceUser.

3.1.2 Multitenancy Management

The multitenancy management package (see Fig. 3.4) is responsible for (i)
registration and (ii) administration of Marketplaces by their marketplace
administrators. The registration of a marketplace publishes the market-
place and makes it available for users to subscribe to as volunteers and
help-seekers. The user that registers the marketplace is automatically
granted the UserRole marketplace administrator and is able to configure
the marketplace wrt. (i) its subscription rules (see Sect. 3.1.2.2), which
can be set in order to restrict subscription access to the marketplace
for both, help-seekers or volunteers and (ii) task workflows in order to
configure different types of task life-cycle behaviors (see Sect. 3.2.4.1).

3.1 cross-marketplace component 27

MultitenancyManagement

Marketplace

- name
- shortName
- url

SubscriptionRule

- userRole: UserRole
- rule

*

1

*1

TaskLifeCycleDefinition::
TaskWorkflow

Figure 3.4: Multitenancy Management Package

3.1.2.1 Marketplace

The class Marketplace is used in order to keep track of registered market-
places at the cross-marketplace component. Each marketplace consist
of a name, its shortName, as well as the previously mentioned logical ad-
dress url. The url is necessary because marketplace components should
run in a standalone and distributed way, with the url addressing the
publicly available address of the marketplace component (see Sect. 4.1).

3.1.2.2 SubscriptionRule

SubscriptionRules are used in order to restrict access to a marketplace for
certain userRoles, i.e., volunteers or help-seekers. If no SubscriptionRules
are established, both, volunteers and help-seekers can freely subscribe to
the respective marketplace. Otherwise, if a SubscriptionRule for a certain
userRole exists, its defined property rule has to evaluate to true in order
to allow users of the respective UserRole access to the marketplace.

3.1.3 Social Management

The social management package (see Fig. 3.5) is responsible for handling
social intercourse between Users within iVolunteer. Since social interac-
tions should not only be limited to marketplaces solely but take place
across all marketplaces, the cross-marketplace component is responsi-
ble for handling them. Therefore, this package includes a concept for
Groups, Postings and their respective Comments. Furthermore, it depicts
various SocialRelationships between Users including the Friend and the
FriendOfAFriend relationship. Last, in order to enable Users to "like each
other", as well as Postings, Comments and Groups, the interface Likeable
is introduced. The social management is inspired by already existing
social networks such as Facebook1 and Twitter2. Since the social manage-
ment is not the core of this thesis, but nevertheless an invaluable part
of a VMS, it will only be discussed briefly in the following sections. A
much more comprehensive overview of social networks is discussed
in [15] and [16].

1 www.facebook.com
2 www.twitter.com

3.1 cross-marketplace component 28

3.1.3.1 Likeable

The interface Likeable is used in order to enable Users the possibility to
express their fondness for other Users, Postings, Comments or Groups.

3.1.3.2 Group

A Group is a collection of Users, sharing a common interest and in-
terested in communicating with each other. As already stated, Groups
are not limited to Users of one specific marketplace, but can be built
up by Users across all marketplaces. Furthermore, Groups are not only
available to volunteers, but all users of different roles (e.g., volunteers,
help-seekers, marketplace administrators) can join and form them. Each
Group consists of a name, its owner (i,.e. the user, that created the group)
and a members-property containing a list of all Users, who joined the
Group.

3.1.3.3 Posting

A Posting is a message of a User (=owner) addressed to either a Group
or all Users which are in a SocialRelationship with the owner of the
Posting (see Sect. 3.1.3.5). While Postings to a Group are called group-
postings, postings to all befriended volunteers are called friend-postings.
This distinction is determined by the visibility-property of a Posting,
meaning that the visibility is either a certain group or all users in a
SocialRelationship. The content of a Posting can vary from a simple text
or different types of multimedia files (e.g., video clips, voice recorded
message) to shared entities of the iVolunteer application (e.g., shared
achievements, tasks, projects, etc.).

3.1.3.4 Comment

A Comment enables users to state their opinion about an already ex-
isting post or another comment. Therefore, Comments always refers to
either only a Posting (= top-level comment) or a Posting and another
Comment (=comment of a comment) and represents a reply (=content)
from a User(=owner) to another one regarding the referenced Posting or
Comment. The Comment has the same visibility as the referenced Posting,
meaning that Comments of a group-posting are also only visible within
the same Group.

3.1 cross-marketplace component 29

SocialManagement

Group

- name

Posting

- owner
- visibility
- content

Comment

- visibility
- content

1* owner

0..1

*
group

1

* owner

1

*
posting

0..1

*

comment

*

* member

1

*
{{abstract}}

SocialRelationship

Friend FriendOfAFriend

{incomplete, disjoint}

UserManagement::
User

1

*

<<Interface>>
Likeable

{incomplete, disjoint}

1

* owner

1

*

likes

Figure 3.5: Social Management Package

3.1.3.5 SocialRelationship

A SocialRelationship marks a social connection between two Users. While
this concept does only include two sub-classes of SocialRelationship -
Friend and FriendOfAFriend, in reality, there are numerous such relation-
ships depicted in, e.g., the Social Relationships Ontology3 (SORON)
and discussed in far more detail in [17] which, however, are not yet
considered in this thesis.

3.1.4 GUI Management

In addition to the other three packages described so far which provide
some core functionality for iVolunteer, the GUI management package
(see Fig. 3.6) provides for some cross-cutting functionality regarding the
configuration of certain dedicated GUI elements called "dashboards" and

3 http://www.bib.uc3m.es/~fcalzada/soron/soron_content/soron

3.1 cross-marketplace component 30

their respective "dashlets". A Dashboard is a visual display presenting
important information in the form of dashlets.

GUI_Management

Dashboard

- name

Dashlet

- xPosition
- yPosition
- height
- width

*1

UserManagement::
User

*

1

Widget

- widgetId
- userRole: UserRole
- defaultSize
- minSize
- maxSize

1

*
widgetId

Figure 3.6: GUI Management Package

3.1.4.1 Widget

A Widget is a view element within iVolunteer and is uniquely identified
by the widgetId. The userRole property marks which UserRole is able
to use the Widget. This is especially necessary because the set of avail-
able Widgets for volunteers and help-seekers is different. For example,
while volunteers have a widget showing all their previously finished
Tasks in the last month, help-seekers do not have access to this widget.
Furthermore, a Widget is characterized by a minSize, defaultSize and
maxSize, which are used by the Dashlets in order to set bounds for the
size customization.

3.1.4.2 Dashlet

A Dashlet wraps a Widget and creates a customizable widget, which can
be displayed on a User’s Dashboard. The respective Widget is referenced
by the widgetId and is then placed at the xPosition and yPosition of
the Dashboard. The height and width represent the displayed size of the
Dashlet. The size of the dashlet has to be between the widget’s minSize
and maxSize.

3.1.4.3 Dashboard

The dashboard is the first screen displayed to a User after a successful
login into iVolunteer. Users can have more than one Dashboard, allowing
them to create different views on specific areas of iVolunteer. Each
Dashboard can be configured to contain a certain set of Widgets that can
be arranged by the respective User. A Dashboard comprises a name and
a list of Dashlets.

3.2 marketplace component 31

3.2 marketplace component
The marketplace component (see Fig. 3.7) represents the place where
volunteers and volunteering opportunities of a VIO come together.
Therefore, the marketplace component mainly revolves around the
allocation of volunteers to tasks, needing not only a highly configurable
task management (i.e., task structure management and task behavior man-
agement), but also further issues, that arise in the broader context of task
management, i.e., (i) management of resources, organizing human and
non-human resources needed for the execution of tasks, (ii) management
of competences, handling competences needed to carry out tasks, (iii)
management of achievements, which are awarded after tasks are carried
out and (iv) management of task recommendations in order for volunteers
to receive fitting task suggestions. Furthermore, this package introduces
the abstract class HashableObject, which lays the groundwork for the
synchronization of footprint entries between the local repository (see
Sect. 3.3.1) and the marketplace, respectively for the verification (see
Sect. 3.3.2.4).

Marketplace Component

TaskBehavior
Management

TaskStructure
Management

Achievement
Mangement

<<access>>
<<access>>

{{abstract}}
HashableObject

- hash

<<access>>

Resource
Management

Recommendation
Management

<<access>>

<<access>>

Competence
Management

<<access>>

<<access>>

<<access>>

TaskLifeCycle
Definition

<<access>>

TaskLifeCycle
Instance

<<access>>

<<access>>

Figure 3.7: Marketplace Component Package

3.2.1 HashableObject

HashableObject is an abstract class (see Fig. 3.7), which enforces for all
sub-classes to be hashable, i.e., it must be able to generate a one-way
hash from the respective objects (see Sect. 3.3.2.2). The class HashableOb-
ject is generally the superclass of all classes, whose objects have to be
stored in the blockchain in order to guarantee verifiability as described
in Sect. 2.4.1. Therefore, it represents the superclass of the classes
Achievement, as well as Task and TaskInteraction. The class Achievement
inherits from HashableObject because it represents entries of the volun-
teer footprint stored in the local repository (see Sect. 3.3.1) and thus

3.2 marketplace component 32

have to be verifiable. While the classes Task and TaskInteraction (see Sect.
3.2.3), are not used for footprint entries, they nevertheless have to be
verifiable, because certain Achievements are awarded in the context of
Tasks and thus are linked to them. For example, a volunteer may receive
an achievement (e.g., a competence) after a certain task was finished.
The achievement is therefore linked to the task and it has to be possible
to verify not only the achievement but also the task, that led to the
achievement. By not only guaranteeing, that Achievements are stored
in the blockchain and thus are verifiable, but also storing Tasks and
TaskInteractions in the blockchain, a higher degree of traceability for
a volunteer’s achievements is reached, i.e., it allows not only for the
verification that a volunteer reached a certain achievement, but also
how it was reached.

3.2.2 Competence Management

Competences in iVolunteer serve two purposes. First, they are used in
order to credit volunteers the competences, they acquire by carrying out
volunteering tasks. Second, they are used in order to set preconditions
volunteers have to fulfill before they are allowed to carry out tasks.
More specific, tasks can be attributed with a set of required compe-
tences, which volunteers must have acquired before they are allowed to
sign for the task. Clearly, these two purposes are intertwined with each
other, because a volunteer earns competences by executing tasks, which
can be used to reserve for other tasks, which require these competences.
While there exist numerous different taxonomies of competences like by
Cheetham and Chivers [18], the taxonomy used in the competence man-
agement is based on the competence dimensions published by Erpenbeck
and Sauter [19] because it is a prominent and frequently referenced tax-
onomy. While the competence dimension represent only a stepping stone
for the much more comprehensible competence atlas [20], the concepts,
which involve competences stated in this thesis, i.e., the synchronization
into the local repository or the publishing of competences to other mar-
ketplaces are independent of the underlying taxonomy of competences
and therefore are also applicable for competences structured according
to the competence atlas. Therefore, since the core of this thesis does
not revolve around the structuring of competences, but rather how
volunteers and VIOs can exploit them, the much simpler competence
dimensions are used as taxonomy in order to describe the competences.

3.2 marketplace component 33

CompetenceManagement

{{abstract}}
Competence

*

1

{incomplete, disjoint}

ProfessionalMethodicalCompetence

ActivityOrientedCompetence

AchievementManagement::
AchievedCompetence

SocialCommunicativeCompetence

PersonalCompetence

Figure 3.8: Competence Management Package

3.2.2.1 Competence

The term competence does not have a widely accepted definition [21]
and is therefore hard to explain, because competences are such a multi-
faceted concept and are either defined as (i) observable performance,
(ii) the outcome of one’s performance or (iii) underlying attributes of a
person [22]. Additionally, there is a difference between the linguistic def-
inition of the terms competence and competency respectively competences
and competencies [23], which can be explained as follows. A competence
is described as the capability to carry out an action, while a competency
is rather the knowledge necessary in order to carry this action out.
In order to mitigate confusion about these linguistic differences, from
now on only the terms competence respectively competences will be used
throughout this thesis. According to Erpenbeck and Sauter [19], four
competence dimensions are commonly used in practice - (i) personal
competences, (ii) activity and action-oriented competences, (iii) professional-
methodical competences and (iv) social-communicative competences. Fig. 3.8
shows the identically-named classes inheriting from the superclass
Competence.

personal competence
Personal competences comprise skills to be smart and critical towards
yourself as well as to develop productive attitudes, values and ideals.
Examples for personal competences are loyalty, self-responsibility or
credibility. Persons with highly developed personal competences are
usually perceived as charismatic and act as role models.

3.2 marketplace component 34

activity and action-oriented competence
Activity and action-oriented competences are related to incorporate skills,
knowledge, social communication, personal values and implement them
into all other competences. Examples are vigor, initiative or execution
readiness. Persons with highly developed activity and action-oriented
competences are typically competitive, willing to take risks and bear
responsibility.

professional-methodical competence
Professional-methodical competences are defined as skills with professional
and methodical characteristics used to creatively solve complex prob-
lems. Examples are expertise, market knowledge or interdisciplinary
knowledge. Persons with highly developed professional-methodical
competences are typically task-oriented and reliable as well as charac-
terized by an analytical and methodical way to achieve goals.

social-communicative competence
Social-communicative competences involve skills to cooperate and com-
municate with other people. Examples are the ability to cooperate, as
well as adaptability to social norms. Persons with highly developed
social-communicative competences typically show a high degree of
empathy.

3.2.3 Task Structure Management

The task structure management (see Fig. 3.9) combined with the task
behavior management (see Sect. 3.2.4 and 3.2.5) form the centerpiece
of the marketplace component. The task structure management pack-
age is primarily responsible for defining and instantiating Tasks and
TaskTemplates, as well as handling the structural customization of tasks
as described in Sect. 2.2.2, i.e., handling user-defined TaskProperties
and TaskRelationships (both, structurally and behaviorally). Whenever
a User interacts with a Task (e.g., a volunteer is assigned to a task), a
TaskInteraction is created. Furthermore, Tasks are integrated into Projects,
thus grouping them together. Finally, the task structure management
combines Tasks with their needed input- respectively output-Resources.

3.2.3.1 Task

The class Task represents volunteering tasks, which both, volunteers and
help-seekers can interact with. The main information a Task consists
of is the name, description, the associated project, the startDateTime and
endDateTime of the task. The taskTemplate-property references a TaskTem-
plate, a Task may be created from. The inputResources contains a set of
Resources (see Sect. 3.2.6.1), which are required in order to carry out the
Task while the outputResources is a set of Resources produced from the
Task. The properties-field contains additional TaskProperties in order to
further structurally customize a Task. Furthermore, a Task references
its WorkflowInstance (see Sect. 3.2.5.1), representing the task life-cycle
instance for this particular Task. The WorkflowInstance is an instantiated
TaskWorkflow and determines the state a Task is currently in. Examples
for states are ’CREATED’, ’PUBLISHED’ or ’FINISHED’.

3.2 marketplace component 35

TaskStructureManagement

1*

TaskLifeCycleInstance::
WorkflowInstance

UserMangement::
User

{incomplete, disjoint}

1

1

1

*

1
*

*

*
inputResource

*

1

Task

- name
- description
- state
- startDateTime
- endDateTime

TaskTemplate

- name
- description

TaskInteraction

- operation
- timestamp
- comment

Project

- name
- description
- startDateTime
- endDateTime

MarketplaceComponent::
Hashable Object

0..1

*

*

*
inputResource

ResourceManagement::
Resource

*

*outputResource

*

*
outputResource

TaskProperty

- name
- type
- value

*

*

{{abstract}}
TaskRelationship

1

*

StructuralTaskRelationship

BehaviouralTaskRelationship

{complete, distinct}

TaskLifeCycleDefinition::
TaskWorkflow

*
1

*

*

CompetenceManagement::Competence

*

*

acquireableCompetences

*

*

requiredCompetences

*

*

requiredCompetences

*

*

acquireableCompetences

Figure 3.9: Task Structure Management Package

3.2.3.2 Project

Seldom, Tasks stand alone for themselves, but rather are part of bigger
real-world projects. The introduction of Project enables help-seekers to
group their Tasks together, thereby establishing the context of a real-
world project. The class Project comprises a name and a description of
the project as well as a time-frame delimited by its startDateTime and
endDateTime.

3.2.3.3 TaskTemplate

As the name indicates, TaskTemplates serve as templates for tasks, in
order to quickly create recurring tasks. TaskTemplates comprise a name,
description, inputResources as well as outputResources and additional
properties, which serve the same purpose as for Tasks. Furthermore,
a TaskTemplate contains a reference to one TaskWorkflow, representing
a type of a task life-cycle. Whenever a new Task is created from a
TaskTemplate, these properties are taken over and attributed to the
respective Task, as well as a new WorkflowInstance is created from the
respective TaskWorkflow, i.e., a task life-cycle instance is created from
the selected task life-cycle type.

3.2 marketplace component 36

3.2.3.4 TaskInteraction

TaskInteractions describe certain interactions between Users and Tasks,
triggered by going from one state of the task’s life-cycle to another one.
Interactions like reading information about a Task do not trigger the
creation of a new TaskInteractions. Therefore, the WorkflowInstance, i.e.,
the task life-cycle instance is coupled with the class TaskInteraction, such
that every time the WorkflowInstance steps from one Activity to the next
one, a TaskInteraction is created, documenting the result of the life-cycle
step. The most typical TaskInteractions, which are also part of the default
task life-cycle of iVolunteer are (i) task creation, (ii) task publication,
(iii) task reservation, (iv) task assignment and (v) task finalization.

3.2.3.5 TaskRelationship

The class TaskRelationship is introduced in order to represent dependen-
cies between two Tasks. As described in Sect. 2.2.2.1, these dependencies
can either be structural or behavioural, resulting in the two sub-classes
StructuralTaskRelationship and BehaviouralTaskRelationship.

structural task relationship A StrucuralTaskRelationship marks
a parent-child relationship between two Tasks and therefore enables
the creation of task hierarchies. StructuralTaskRelationships are generally
used to split large and complex Tasks into smaller ones in order to
reduce complexity and make Tasks easier for volunteers to carry them
out.

behavioural task relationship Contrary to StructuralTaskRelation-
ships, BehaviouralTaskRelationships are used to define behavioural depen-
dencies between tasks. An example of a BehaviouralTaskRelationships
would be a temporal dependency, where one certain Task has to be
finished before another one can be carried out.

3.2.3.6 TaskProperty

TaskProperties are used to customize the structure of a single Task or
TaskTemplate (see Sect. 2.2.2.1). A TaskProperty comprises a name, its
value type, and the value itself. Common examples for types are boolean,
floating point number or string.

3.2.4 Task Life-Cycle Definition

The task life-cycle definition package (see Fig. 3.10) describes the build-
ing blocks a task life-cycle can be built from. In general, a task life-cycle
represents a unidirectional graph consisting of nodes and edges. The
nodes represent actions of the life-cycle while the edges define tran-
sitions between them. The following model is heavily inspired from
the workflow management framework Activiti4, which was used in the
implementation of the proof-of-concept prototype.

4 https://www.activiti.org/

3.2 marketplace component 37

3.2.4.1 TaskWorkflow

The class TaskWorkflow describes the task life-cycle definition (see Sect.
2.2.2), determining the behavior of the respective task. A task life-cycle
represents a state-machine containing all states a task can reach as
well as all transitions between those states. A task life-cycle can be
established by incorporating life-cycle support into a task management [10],
dealing with the preservation and evolution of tasks. The main dif-
ference between task life-cycle and life-cycle support for a task man-
agement is that the former deals with the adaptation of a single task,
while the latter depicts the process of how task life-cycles are estab-
lished and evolved. Each TaskWorkflow contains a workflowName and
a workflowUri, locating the workflow definition file (e.g., a valid task
workflow described on the basis of BPMN [24]). Furthermore, each
TaskWorkflow can be activated respectively deactivated by setting the
active flag accordingly, thereby making new tasks available respectively
unavailable for life-cycle definition.

3.2.4.2 FlowElement

In general, a TaskWorkflow consists of a series of FlowElements, which
are stepped through as the task life-cycle is processed. However, Flow-
Elements cannot be strung together arbitrarily, but rather a workflow
is built like a graph from the juxtaposition of nodes and edges, which
are called FlowNode and SequenceFlow (cf. the corresponding subclasses
below). The abstract class FlowElement comprises a name and a list of
additional properties, which can be used to state further information
about the FlowElement.

3.2.4.3 SequenceFlow

A SequenceFlow connects two FlowNodes with each other, therefore en-
abling the workflow to step from one FlowNodes to another by following
the respective path. This path is stored by the SequenceFlow in the form
of the source respectively target FlowNode. By storing the FlowNodes
explicitly as source and target, a SequenceFlow provides therefore always
a unidirectional path between them. Furthermore, a SequenceFlow can
be customized with a conditionExpression, managing whether the flow
will be followed or not. In general, a conditionExpression is only needed,
when several paths emanate from a FlowNode (see Sect. 3.2.4.10). In this
case the conditionExpression is evaluated in order to select the path that
should be followed. This property is especially required for Gateways
(see Sect. 3.2.4.10).

3.2.4.4 FlowNode

As already stated, a FlowNode is a FlowElement representing an action in
the workflow. A FlowNode is further distinguished into either an Activity
or a Gateway (cf. subclasses below). While an Activity is an active node,
where an action is either started automatically or by a user, a Gateway is
an intermediate node that handles one-to-many SequenceFlows between
FlowNodes.

3.2 marketplace component 38

TaskLifeCycleDefinition

{incomplete, distinct}

{incomplete, distinct}

*

1

flowElements

{incomplete, distinct}

ExclusiveGateway ParalellGateway

{incomplete, distinct}

{incomplete, distinct}

* 1source
* 1target

InclusiveGateway

SequenceFlow

- conditionExpression

{{abstract}}
Activity

- loopCharacteristics
- dataInput
- dataOutput

{{abstract}}
WorkflowTask

- skipExpression

UserTask

- assignee
- owner
- category

ServicTask

- implementationType
- class
- expression

{{abstract}}
Gateway

- defaultFlow

{{abstact}}
FlowNode

SubProcess

TaskWorkflow

- workflowName
- workflowUri
- active

1* workflowElements
{{abstract}}
FlowElement

- name
- properties

Figure 3.10: Task Life-Cycle Definition Package

3.2.4.5 Activity

An Activity represents an active state in the workflow, where either a
process is started automatically or the workflow is waiting for further
user input. Each Activity contains properties for dataInput and dataOut-
put. The dataInput is often times needed for internal computations of
the activities, which can result in additional dataOutput that can be
queried after an Activity is processed. The property loopCharacteristics
is necessary because an Activity can not only trigger its internal action
once but several times. The loopCharacteristics is an expression, that
marks how often the activity’s computation is triggered. For example,
an Activity can be triggered a fixed amount of times or until a certain
condition evaluates to true.

3.2.4.6 SubProcess

SubProcesses are required to structure a workflow into smaller sub-
workflows and therefore enabling reuse and reducing complexity.

3.2 marketplace component 39

3.2.4.7 WorkflowTask

In contrast to a SubProcess, which can be seen as a composition of
multiple Activities, a WorkflowTask represents only a single action. Addi-
tionally, a WorkflowTask comprises a skipExpression, regulating whether
to skip the WorkflowTask or not depending on the given expression.

3.2.4.8 UserTask

A UserTask is a special form of WorkflowTask, which is executed only after
a user interaction is triggered. The UserTask stores the assignee, i.e., the
user that is able to perform the UserTask, the owner of the UserTask and
the category of the task. The category is used to group UserTasks together,
for example into default UserTasks and special UserTasks, which can be
used to distinguish between different user-interface implementations.

3.2.4.9 ServiceTask

In contrast to UserTasks, which are only executed after a user interaction
is initiated, ServiceTasks are triggered automatically, when the workflow
reaches the respective WorkflowTask and executes their associated imple-
mentation. The implementation of a ServiceTask can be either defined by
a fixed class or given by an expression. The implementationType regulates
which of the two types should be applied for the respective ServiceTask.

3.2.4.10 Gateway

Gateways allow for the introduction of branches, i.e., forks and joins, en-
abling to model much more complex workflows as compared to single
path workflows. Gateways are dynamically evaluated and depending
on the sub-class - ExclusiveGateway, ParalellGateway or InclusiveGateway -
and their respective outgoing SequenceFlow’s conditionExpressions one or
all paths of the Gateway are processed (cf. below). The class Gateway con-
tains a defaultFlow, referencing the SequenceFlow, that should be taken if
no other expression is given. While a Gateway is a single FlowNode, in
the workflow a gateway is always used for both, the forking and the
joining part as depicted in Fig. 3.11. The forking gateway is located at
the start of the branch and consists of at least one incoming flow and
several outgoing flows. The joining gateway is the counterpart to the
forking gateway and is placed at the end of the branch with several
incoming flows and only one outgoing flow.

Figure 3.11: Exemplary Gateway

3.2 marketplace component 40

3.2.4.11 ExclusiveGateway

ExclusiveGateways are Gateways, where exactly one outgoing Sequence-
Flow is processed. For this type of Gateway, all outgoing SequenceFlows
of the forking gateway have to be annotated with a conditionExpression,
evaluating to either true or false, determining if the path should be
processed or not. In general, the conditionExpression of all outgoing
SequenceFlows have to be complete and distinct, meaning that for each
possible outcome of the evaluation of all conditionExpression at least one
(completeness) and at most one (distinctness) SequenceFlow must be
taken, i.e., exactly one outgoing SequenceFlow for each possible outcome
of the evaluation of all conditionExpression.

3.2.4.12 ParallelGateway

In contrast to the ExclusiveGateway, the ParallelGateway does not have
annotated outgoing flows at the forking Gateway, because all Sequence-
Flows are taken and processed concurrently. At the joining gateway
all SequenceFlows are synchronized with each other, thus waiting until
each SequenceFlow is finished. After all SequenceFlows are finished, the
workflow proceeds.

3.2.4.13 InclusiveGateway

The InclusiveGateway is a hybrid gateway resembling to some extent
the ExclusiveGateway and the ParallelGateway. Outgoing SequenceFlows
of the forking gateway are annotated with conditionExpressions like in
ExclusiveGateways, but more than one paths can be taken (i.e., all Se-
quenceFlows whose conditionExpression evaluates to true). Therefore, the
conditionExpression has to only be fulfilled the completeness characteris-
tic. Similar to the ParalellGateway, the joining gateway synchronizes all
executed flows and then proceeds with the next workflow step.

3.2.5 Task Life-Cycle Instance

While the task life-cycle definition package (see Fig. 3.12) is responsible for
modelling TaskWorkflows, the task life-cycle instance package handles the
execution of them by creating a WorkflowInstance from the TaskWorkflow.
Once a TaskWorkflows is modelled, it can be executed arbitrarily often
and concurrently (i.e., several workflow executions of the same defined
workflow at the same time) since each WorkflowInstance is independent
of all others. Within iVolunteer, each Task is coupled with one Work-
flowInstance, which handles its task life-cycle accordingly to the defined
TaskWorkflow.

3.2 marketplace component 41

TaskLifeCycleInstance

1

1

currentActivity

currentActivity

currentActivity

1

*
incomingTransitions

1

*
outgoingTransitions

1

0..1

currentTransition

0..1
*

parent

WorkflowInstance

- variables

ActivityInstance

- activityBehavior
- variables

TaskLifeCycleDefinition::
Activity 1 *

TaskLifeCycleDefinition::
SequenceFlow 1 *

TaskLifeCycleDefinition::
TaskWorkflow 1 *

TransitionInstance

Figure 3.12: Workflow Instance Package

3.2.5.1 WorkflowInstance

The class WorkflowInstance is handling one executed workflow cre-
ated from a previously defined TaskWorkflow, which is referenced via
the workflow-property. A WorkflowInstance is not only created from a
TaskWorkflow, but also for each SubProcesses of the TaskWorkflow a new
WorkflowInstance is created. WorkflowInstances instantiated from SubPro-
cesses have to reference the WorkflowInstance of their TaskWorkflow as
parent property. The WorkflowInstance of the TaskWorkflow does not have
a parent. Each WorkflowInstance is additionally attributed with a cur-
rentActivity and currentTransition referencing the currently processing
or waiting to be executed ActivityInstance, respectively the last Transi-
tionInstance taken. Finally, each WorkflowInstance can have additional
variables, which can be used by ActivityInstance for computations.

3.2.5.2 ActivityInstance

An ActivityInstance is an instantiated Activity consisting of incoming-
Transitions and outgoingTransitions as well as an activityBehavior, which
implements the functionality of the referenced Activity. Additionally,
each ActivityInstance contains variables, which can be used in the com-
putations of the Activity.

3.2.5.3 TransitionInstance

The TransitionInstance represents the instantiated SequenceFlow between
two ActivityInstances.

3.2.6 Resource Management

The resource management package (see Fig. 3.13) is responsible for han-
dling both, human and non-human resources within iVolunteer. All

3.2 marketplace component 42

users subscribed to the marketplace component should be able to add
their resources, they can bring in, especially for non-human resources
like, benches or tables. Afterwards, tasks are able to claim the resources
for the time-frame, they are executed.

Resource Management

{{abstract}}
Resource

- name

{{abstract}}
HumanResource

{{abstract}}
NonHumanResource

{complete, disjoint}

PhysicalResource

VirtualResource

{incomplete, disjoint}

NonVolunteer

{incomplete, disjoint}

Volunteer

UserManagement::
User

1

0...1

Figure 3.13: Resource Management Package

3.2.6.1 Resource

A Resource can be described as a source or supply from which a benefit is
obtained [7]. Resources are generally divided into either HumanResources
or NonHumanResources, which will be described in the following.

3.2.6.2 HumanResource

Within iVolunteer, HumanResources are further divided into Volunteers
and NonVolunteers. While the former describes volunteers of a VIO,
the latter describes paid employees of the VIO (e.g., help-seekers).
Both, Volunteers and NonVolunteers can be linked to registered User
of the marketplace. In order to also allow for the management of
Volunteers and NonVolunteers, which are not yet registered to iVolunteer,
a reference to the User is not necessary.

3.2.6.3 NonHumanResource

In contrast to HumanResources, NonHumanResources are not insepara-
ble from human individuals. They can further be divided into either
PhysicalResources and VirtualResources. While the former describes Non-
HumanResources that are tangible, the latter are intangible.

3.2 marketplace component 43

3.2.7 Recommendation Management

The recommendation management package (see Fig. 3.14) offers ways to
recommend or suggest Tasks to volunteers. It differentiates between
Recommendations and Suggestions, where the former is triggered by the
iVolunteer system automatically, while the latter is triggered by another
user (e.g., a volunteer suggesting a task to a friend). A further difference
is, that in order to compute Recommendations, appropriate matching
algorithms have to be applied to find fitting tasks for volunteers.

RecommendationManagement

*

1

recommendedTask Recommendation

TaskStructureManagement::
Task UserManagement::User

*

1
receiver

Suggestion
*

1
receiver

*

1
proposer

*

1

suggestedTask

Matcher

+ findMatch(user): Task[]
+ findMatch(task): User[]

Figure 3.14: Recommendation Management Package

3.2.7.1 Recommendation

A Recommendation is a proposal by iVolunteer to a volunteer (i.e., the re-
ceiver), containing a recommendedTask that matches the published Achieve-
ments of a volunteer (i.e., Achievements in the PublicVolunteerRepository)
as best as possible. In order to find such fitting tasks, the class Matcher
is used (see Sect. 3.2.7.3).

3.2.7.2 Suggestion

A Suggestion is a proposal by another user (i.e., the proposer) to a
volunteer (i.e., the receiver) containing a suggestedTask.

3.2.7.3 Matcher

The Matcher is the basis for finding appropriate Tasks for volunteers
and vice versa. It, therefore, contains two methods - findMatch(user)
for the former and findMatch(task) for the latter. In order to find fitting
tasks for volunteers respectively fitting volunteers for tasks, the Matcher
has to implement algorithms belonging to the domain of recommender
systems. The most widely used recommendation techniques are content-
based recommendation and collaborative filtering [25], which will be
explained in the future work section of this thesis (see Sect. 6.2.3.1).

3.2 marketplace component 44

3.2.8 Achievement Management

The achievement management (see Fig. 3.15) package handles earned
achievements for volunteers. The main class within the achievement
management is Achievement, which is either an AchievedCompetence or a
CompletedTask. Compared to the already described classes Competence
and Task, which are primarily used to describe tasks and competences,
the classes AchievedCompetence respectively a CompletedTask state that
a volunteer earned a Competence or completed a Task. While currently
only those two classes represent possible Achievements, it is considered
to include further types of achievements like ranks, badges or awards
in the future (see Sect. 6.2.1.1).
Achievements form the main element of the volunteer footprint and
must therefore be synchronizable between the local repository of the
volunteer and the marketplaces. Thus, as already stated in Sect. 3.2.1,
the class Achievement is required to inherit from HashableObject, since
Achievements are hashed and stored in the blockchain for verification
purposes.
The achievement management further introduces the PublicVolunteerPro-
file, which contains all Achievements, that are published at the respective
Marketplace. Later in the description of the local repository package
(see Sect. 3.3.1), the PrivateVolunteerProfile is introduced, containing all
Achievements that are synchronized to the decentralized storage of the
volunteer, i.e., their local repository. A detailed overview of the inter-
connection between those two "volunteer profiles" will be discussed
there.

Achievement Management

* 0..1

{incomplete, disjoint}

{{abstract}}
Achievement

- timestamp

MultitenancyManagement::
Marketplace

UserMangement::User

MarketplaceComponent::
HashableObject

{incomplete, disjoint}

*

1

*1

AchievedCompetence CompletedTask

TaskStructureManagement::
Task

CompetenceManagement::
Competence

1

*

1

*

*

1

PublicVolunteerProfile

*1

CompetenceEvidence **

Certificate

Rule

{incomplete, disjoint}

Figure 3.15: Achievement Management Package

3.2 marketplace component 45

3.2.8.1 Achievement

The abstract class Achievement inherits from HashableObject and is the
superclass of all sorts of accomplishments a marketplace offers, like
the acquirement of a competence for one volunteer (i.e., AchievedCompe-
tences) or the completion of a task by a volunteer (i.e., CompletedTasks).
Each Achievement references the User, obtaining the achievement, the
Marketplace issuing the achievement and the time when the achievement
was issued as timestamp. After an Achievement is issued (i.e., created
because a volunteer earned a competence), it is initially neither part
of the PublicVolunteerProfile nor of the PrivateVolunteerProfile. First, the
volunteer has to synchronize the Achievement into their PrivateVolun-
teerProfile, afterwards, they can publish it and thus adding it to their
PublicVolunteerProfile.

3.2.8.2 CompletedTask

The CompletedTask marks that a volunteer finished working on a certain
Task. It, therefore, credits the volunteer for participating in a task. For
each Task that is carried out by one or more volunteers, each of them
receives a CompletedTask achievement when the task life-cycle is finished.

3.2.8.3 AchievedCompetence

Similar to the CompletedTask, representing, that a volunteer completed
a task, an AchievedCompetence indicates that a volunteer acquires a
competence.

3.2.8.4 CompetenceEvidence

A CompetenceEvidence is necessary in order to state how an AchievedCom-
petence was awarded and is therefore necessary for the traceability of
the competences a volunteer earned. CompetenceEvidence is either a Rule
that states how the competence was awarded or a Certificate proving
that a volunteer acquired the competence.

3.2.8.5 Rule

A Rule gives information about how a volunteer earned a Competence
and defines which preconditions must be fulfilled in order to receive
which Competence. The definition of preconditions allows for several de-
grees of freedom and can involve rules regarding the completion of one
or several specific tasks, the time a volunteer already contributed, a set
of other competences a volunteer must already have, etc. Rules are the
primary way for volunteers to acquire Competences within iVolunteer.

3.2.8.6 Certificate

A Certificate proves that a volunteer already acquired a Competence.
Certificates are used in order to allow volunteers to bring in Competences
they acquired outside of iVolunteer.

3.3 footprint component 46

3.2.8.7 PublicVolunteerProfile

The PublicVolunteerProfile represents the set of Achievements a volunteer
disclosed at a Marketplace. In contrast, the PrivateVolunteerProfile (see
Sect. 3.3.1.1) consists of the set of Achievements a volunteer synchro-
nized into the local repository. This differentiation is subtle but not less
important because the sets of Achievements contained in the PublicVol-
unteerProfile and PrivateVolunteerProfile can be different. Furthermore,
it is important to consider, that a marketplace can only use Achieve-
ments that are contained in the PublicVolunteerProfile because it does
not have access to any Achievements of the PrivateVolunteerProfile. In
Sect. 3.3.1.1, application scenarios of the interconnection between the
PublicVolunteerProfile and PrivateVolunteerProfile will be discussed.

3.3 footprint component
As already stated in Sect. 2.4, the footprint component has two main
responsibilities - (i) footprint synchronization management and (ii) footprint
verification management. While the former is responsible for the synchro-
nization of the volunteer footprint between the local repository and
the marketplaces, the latter guarantees that the entries of the volunteer
footprint can be verified in order to detect inconsistencies, e.g., when
volunteers erroneously add competences to the local repository that
they did not earn. From those two responsibilities, the packages local
repository and trust management arose realizing them. The local repos-
itory represents the storage of the volunteer footprint, that is solely
operated by the volunteer and therefore is the counterpart to the Pub-
licVolunteerProfile discussed in Sect. 3.2.8. The trust management allows
for the already addressed verification of the footprint by employing a
blockchain.

3.3.1 Local Repository

The local repository package (see Fig. 3.16) contains the already men-
tioned PrivateVolunteerProfile comprising all Achievements a volunteer
has synchronized. In contrast to the PublicVolunteerProfile which exists
for each marketplace, the PrivateVolunteerProfile exists exactly once per
volunteer and is stored decentralized in the local repository, accessi-
ble only by the respective volunteer. The local repository cannot be
accessed by a marketplace or any other user without the approval of
the respective volunteer, possessing it. Whenever volunteers wants to
synchronize the volunteer footprint between the local repository and
one marketplace, access to the local repository for the marketplace has
to be granted.

3.3 footprint component 47

LocalRepository

AchievementManagement::
Achievement

UserManagement::
User

*

1

*0..1
PrivateVolunteerProfile

Figure 3.16: Local Repository Package

3.3.1.1 PrivateVolunteerProfile

The class PrivateVolunteerProfile contains a set of Achievements, that a
certain volunteer already acquired (see Sect. 3.2.8). The primary usage
of the PrivateVolunteerProfile is to allow for the synchronization of these
Achievements between the local repository and the marketplaces’ Pub-
licVolunteerProfile.
In the following, scenarios regarding the interconnection between the
PublicVolunteerProfile of a certain marketplace and the PrivateVolunteer-
Profile are discussed. Overall, three different cases wrt. the content
of the PublicVolunteerProfile and the PrivateVolunteerProfile can be dis-
tinguished. The first case is where the PrivateVolunteerProfile and the
PublicVolunteerProfile of one marketplace are completely distinct, i.e.,
they contain no common Achievement. In case two and three, the Privat-
eVolunteerProfile and the PublicVolunteerProfile overlap respectively are
equal. In the subsequent Venn-Diagrams, the set Apublic corresponds
to the set of Achievements of the PublicVolunteerProfile while Aprivate

represents the set of Achievements of the PrivateVolunteerProfile.

distinct volunteer profiles (Aprivate ∩Apublic = ∅) In the first
scenario, the set of Achievements of the PublicVolunteerProfile and the
PrivateVolunteerProfile are distinct (see Fig. 3.17), i.e., they don’t have
any Achievements in common. This case is also prevailing if one vol-
unteer profile does not contain any Achievements. In general, having
distinct volunteer profiles is not desirable, neither for the marketplace
nor for the volunteer, because volunteers cannot use the functionality
of iVolunteer to its full extent. For example, it will not allow volunteers
to reserve for certain tasks, which require some of those Achievements
in order to be able to carry out these tasks.

Figure 3.17: Distinct Volunteer Profiles

3.3 footprint component 48

overlapping volunteer profiles (Aprivate ∩Apublic 6= ∅) An
overlapping PublicVolunteerProfile and PrivateVolunteerProfile (see Fig.
3.18) share at least one achievement. All Achievements of the PublicVolun-
teerProfile can therefore be used by the marketplace in order to suggest
appropriate Tasks that are similar to previously accomplished Complet-
edTasks and AchievedCompetences. In order to increase the intersection
between the PublicVolunteerProfile and the PrivateVolunteerProfile, vol-
unteers have to publish Achievements (see Sect. 2.4.2) from their local
repository (i.e., PrivateVolunteerProfile) to the PublicVolunteerProfile of
the respective marketplace. If all Achievements from the PrivateVolunteer-
Profile are published, both volunteer profiles should contain exactly the
same Achievement and are therefore equal (cf. below).

Figure 3.18: Overlapping Volunteer Profiles

equal volunteer profiles (Aprivate = Apublic) If both, the Pub-
licVolunteerProfile and the PrivateVolunteerProfile contain the same set of
Achievements (see Fig. 3.19), they are deemed equal. Having an equal
set of Achievements across both, the PublicVolunteerProfile and the Pri-
vateVolunteerProfile is ideal for the respective marketplace, because it
can suggest more suitable Tasks to the volunteers. Nevertheless, a vol-
unteer may strive not to have equal volunteer profiles, because of its
possible repercussions if one marketplace and therefore its VIO knows
all achievements of a volunteer from another marketplace (i.e., another
VIO).

Figure 3.19: Equal Volunteer Profiles

3.3.2 Trust Management

The trust management package (see Fig. 3.20) realizes the footprint ver-
ification management (see Sect. 2.4) and lays the foundation for the
immutability, trustability, verifiability and information obfuscation character-
istics of the volunteer footprint entries. The immutability characteristic
is achieved by incorporating a blockchain (see Sect. 4.1.4), storing Hash-
ableObjects and thereby establishing trust between the volunteers and

3.3 footprint component 49

the marketplaces and allowing for their verifiability. Last, the Hash-
ableObjects in the blockchain are stored as hashes thereby achieving
information obfuscation. More precisely, Contracts are created from the
HashableObjects, thereby obfuscating the information of the HashableOb-
jects, while still guaranteeing that the original HashableObjects remain
verifiable by hashing them and comparing the hash with the hash of
the Contracts. Therefore, the trust management is primarily responsible
for (i) creating, (ii) inserting and (iii) verifying blockchain entries. These
three functionalities are implemented by the classes Hasher, Contractor
and Verifier respectively.

TrustManagement

MultitenancyManagement::
Marketplace

UserManagement::
User

MarketplaceComponent::
HashableObject

Contract

- timestamp

1

1 hash

1

*

1
*

Hasher

+ hash(hashableObject)

Verifier

+ verify(hashableObject)

Contractor

+ write(hashableObject)

Figure 3.20: Trust Management Package

3.3.2.1 Contract

A Contract is an obfuscated (i.e., hashed) version of a HashableObject,
which is represented as its hash. In addition, Contract comprises the
user, it belongs to, the respective marketplace as well as a timestamp of
its creation time. The mentioned obfuscation is required because the
Contracts, which are stored in the blockchain, are accessible to other
users of iVolunteer.

3.3.2.2 Hasher

The Hasher is responsible for creating one-way hashes from HashableOb-
jects (see Sect. 3.2.1). The hashes are created by concatenating all proper-
ties of the HashableObject and applying the SHA-256 hashing algorithm.

3.3.2.3 Contractor

The Contractor provides means to insert HashableObjects into the blockchain
by first hashing them and creating a Contract from the hash. The created
Contract is then inserted into the blockchain.

3.3.2.4 Verifier

The Verifier is used to verify HashableObjects (see Sect. 3.2.1) (e.g., Achieve-
ments of a volunteer’s local repository). The verification process involves
the hashing of the HashableObject and looking up the resulting hash

3.3 footprint component 50

in the blockchain by comparing whether an existing Contract in the
blockchain has the same hash. If the blockchain does contain such a
Contract, the Verifier returns true, otherwise false.

4 SYST E M A R C H I T E C T U R E

Contents
4.1 Architecture Components 51

4.1.1 Cross-Marketplace Component 51
4.1.2 Marketplace Component 52
4.1.3 Trustifier . 53
4.1.4 Blockchain . 54
4.1.5 Local Repository 56
4.1.6 Client . 57

4.2 Architecture Deployment 58
4.2.1 Cross-Marketplace Server 58
4.2.2 Blockchain Server 59
4.2.3 Marketplace Server 59
4.2.4 Client Computer 60

In this chapter, the system architecture of the developed proof-of-
concept prototype - based on the conceptual approach - is discussed.
First, each architecture component will be described, followed by a de-
piction of the concrete deployment of each component in a distributed
way, showing the applicability of the distributed architecture for the
proof-of-concept prototype.

4.1 architecture components
The architecture components comprise the (i) cross-marketplace compo-
nent and the (ii) marketplace component, originating from the identically
named packages of the conceptual approach, the (iii) trustifier, (iv)
blockchain and (v) local repository derived from the footprint component
and the (vi) client enabling different user roles (see Sect. 2.1) to use the
functionality as stated in Chapter 2. Fig. 4.1 shows the architecture com-
ponents, including the components provided and required interfaces,
illustrating the data flow between the architecture components.

4.1.1 Cross-Marketplace Component

As described in Sect. 3.1, the cross-marketplace component is respon-
sible for (i) user management, (ii) multitenancy management, (iii) social
management and (iv) GUI management. The depicted cross-marketplace
architecture component of the proof-of-concept prototype focuses only
on the former two responsibilities and disregards the latter two because
it would go beyond the scope of this thesis. While the social manage-
ment will be discussed in the future work chapter (see Sect. 6.2.2.1) of
this thesis, the GUI management will be discussed in-depth in the thesis

51

4.1 architecture components 52

of my colleague Berthold Roiser.

ClientCross-
Marketplace

Marketplace

Project, Task, TaskTemplate, TaskInteraction,
Competence, Achievement, WorkflowInstance

User

User,
Marketplace

Blockchain

HashableObject

Contract

Trustifier HashableObject

Local
Repository

Achievement

Figure 4.1: System Architecture Components

The cross-marketplace component is a stand-alone server application
running and employing an own cross-marketplace database, storing
both, Marketplace and User entities, as well as relationships between
them, i.e., which Users are subscribed to which Marketplaces, carry-
ing out a certain UserRole (see Sect. 3.1.1 resp. 3.1.2). Thus, the cross-
marketplace component globally manages all users across all market-
places and therefore is able to provide a single sign-on authentication
for all marketplaces as stated in Sect. 2.3.1. All further user-specific
information (e.g. achievements of volunteers, etc.) and interactions with
the marketplaces are stored decentralized solely at the databases of the
marketplaces themselves (see Sect. 4.1.2). As described in Sect. 2.3, the
cross-marketplace component allows for users and marketplaces to ini-
tially perform registration at iVolunteer as well as manage subscriptions
of users to marketplaces. Furthermore, it provides information about
Users and Marketplaces via interfaces to the marketplace components
and the clients as can be seen in Fig. 4.1. The cross-marketplace compo-
nent is managed by the platform administrator (see Sect. 2.1.4), which
is responsible for monitoring and troubleshooting issues regarding the
cross-marketplace component.

4.1.2 Marketplace Component

Similar to the cross-marketplace component, the marketplace component is
also a stand-alone web server application, which can run on a different
server than the cross-marketplace component. In contrast to the cross-
marketplace component, which runs just once, each VIO can operate
multiple marketplace components distributed across multiple servers.
Each marketplace component employs two databases - the workflow
database and the marketplace database. While the workflow database stores
all task life-cycle definitions and instances, the marketplace database
stores all other objects as described in Sect. 3.1.2.1. This distinction is

4.1 architecture components 53

necessary because a dedicated workflow engine (i.e., Activiti1) is utilized
in order to handle the task life-cycles, relying on an own database,
i.e., the workflow database. Similar to the cross-marketplace component
which is managed by the platform administrator, each marketplace
component is operated by its respective marketplace administrator (see
Sect. 2.1.3).
The marketplace component provides marketplace functionalities for
VIOs as described in Sect. 3.1.2.1 - (i) task structure management, (ii) task
behavior management, (iii) resource management, (iv) competence manage-
ment, (v) achievement management and (vi) recommendation management.
Since a full implementation of the marketplace component would go
beyond the scope of this thesis, the focus laid on a comprehensive
implementation of the tasks structure and task behavior management,
as well as a shallow implementation of the achievement management
and competence management. Both, the resource management and the
recommendation management will not be discussed in this chapter,
yet especially the recommendation management will be discussed sep-
arately in the future work chapter (see Sect. 6.2.3.1). A special focus
was laid on the task behavior management by realizing a configurable
task life-cycle through the utilization of Activiti as workflow engine,
allowing to define and execute workflows (see Sect. 3.2.4 and 3.2.5).
Generally speaking, the task workflow prescribes the steps a task has to
go through from creation to completion and therefore makes the task
execution configurable. This is especially necessary because organiza-
tions typically have different requirements and rule-sets when it comes
to their processes and executions of their tasks (see Sect. 2.2.2).
In order to allow the marketplace component access to the users of
iVolunteer, respectively access to its own subscribed users it consumes
the cross-marketplace component’s User interface as shown in Fig. 4.1.
Furthermore, the marketplace component provides interfaces for all the
objects stored in both databases, i.e., Project, Task, TaskTemplate, TaskInter-
action, Competence, Achievement and WorkflowInstance to the clients, thus
allowing for them to be displayed to the users and enabling interactions
with them (e.g., creating a new task). In order to store respectively ver-
ify these objects, the marketplace component consumes the Trustifier’s
interface for HashableObjects.

4.1.3 Trustifier

The trustifier implements the trust management as introduced in Sect.
3.3.2 and is responsible for managing access for clients and market-
place components to Contracts (i.e., obfuscated HashableObjects; see Sect.
3.3.2.1) stored in the blockchain. As shown in Fig. 4.1 the trustifier
provides interfaces of Contracts to both, the clients (especially the vol-
unteer clients) and the marketplaces by consuming the interface of the
blockchain. Thus, the trustifier has to be able to (i) generate and write
Contracts as well as to (ii) verify existing HashableObjects by generat-
ing a hash and comparing it with the hash of Contracts stored in the
blockchain. While the proof-of-concept prototype allows all actors to
read from and write to the blockchain, only the trustifier is able to write

1 https://www.activiti.org/

4.1 architecture components 54

verifiable Contracts because only the trustifier knows the production
rules of Contracts, i.e., how Contracts are created from HashableObjects.
This behavior leads to two major drawbacks - (i) participants have
to trust the trustifier component in order to generate Contracts, that
both, the volunteer and the marketplace agree upon, thus diminishing
the trust that is established by the blockchain and (ii) that the pro-
duction rules have to be kept secretly, otherwise every participant of
the blockchain could create valid blockchain entries, leading to the
fraudulent behavior, where volunteers would be able to add verifiable
competences to their footprint, they did not acquire beforehand. Both
of these shortcomings, will be discussed in the Master’s thesis of my
colleague Philipp Starzer, where a solution for them will be presented,
revolving around the realization of the trustifier functionality as smart
contracts within the blockchain. However, in order to still balance trust
between volunteers and the marketplaces as best as possible with the
existing architecture, the trustifier is operated by neither of them, but
instead by the platform administrator (see Sect. 2.1.4), which is also
responsible for managing the cross-marketplace component. Therefore,
both, the volunteers and the marketplaces should be restricted with
their power over the other participants, when it comes to the generation
and verification of Contracts.

4.1.4 Blockchain

A blockchain represents a distributed ledger, where most or all of the
participants - which may be unknown - agree on the current state and
all states beforehand of each blockchain asset (i.e. the data stored in
the blockchain). The reason, why this is such a taxing task is because,
due to the sheer unlimited number of potential participants and their
possibly destructive intentions, blockchains still guarantee that a con-
sensus between all or most of the participants is reached and can be
trusted afterwards even though the participants do not have to trust
each other, leading to the establishment of trust in a trust-less envi-
ronment. Often times the terms blockchain and crypto-currencies are
used synonymously, but to characterize a blockchain in general as a
currency platform (e.g. Bitcoin [26]) does not nearly do the technology
enough justice because nowadays blockchains are more sophisticated
and are applicable not only in finance but rather in general-purpose
applications [27]. Therefore, the main characteristics of blockchains
stray further than the establishment of trust, but rather covers the (i)
immutability of the blockchain assets, the (ii) incorporation of smart con-
tracts and user-defined entities additionally or instead of coins as well
as the (iii) usage of interchangeable consensus mechanisms for blocks and
transactions. Especially the first characteristic - immutability - is needed
for the footprint management because it guarantees that the footprint
cannot be maliciously altered, e.g., volunteers appending competences
that they do not have. There already exists a plethora of publications
discussing the applicability of blockchain-driven verification systems in
various different domains like in industry [28], to support supply chain
management processes [29], [30], for educational purposes [31], [32] as
well as generally for the verification of documents [33].

4.1 architecture components 55

4.1.4.1 Design Decision for a Blockchain

As stated in the requirements for the footprint verification management
(see Sect. 2.4.1), the following non-functional requirements are essential
in order to guarantee that the verification of the footprint entries can
be successfully performed, while still ensuring data privacy. These four
requirements cover (i) the trustability, that verified footprint entries can
be trusted by all participants, the (ii) immutability of the entries in the
verification storage, guaranteeing that they are not changed afterwards,
thus not allowing participants (e.g., volunteers and VIOs) to change
stored entries after they were issued, thereby not permitting to either
improve or worsen it illegitimately. Furthermore, (iii) information obfusca-
tion is necessary in order to protect private data and last (iv) verifiability
has to be ensured even if the information is obfuscated.
Since one of the main features of blockchains is to ensure trust in a
trustless environment it completely fulfills the first requirement better
than any substitute because all other possible solutions for a verification
storage (e.g. centralized database operated by the government) would at
least require some sort of trust in the organization managing the verifica-
tion storage. As for a blockchain-based solution, the trust is established
by design through distributing the blockchain to several or a nearly
unlimited amount of participants, while still ensuring that a consensus
between the participants can be found. While in theory, blockchains are
not completely foolproof, when it comes to trusting them (e.g. through
majority attack), the threshold to deliberately change the assets with
malicious intent is practically not possible to reach as long as there
are enough participants holding replications of the blockchain. The
second requirement is met because all transactions of a blockchain are
stored in blocks which are cryptographically linked together, thereby
enforcing immutability of the transactions. Since the transactions are
immutable, it can be ensured, that changes to the blockchain assets,
which can only be performed through these transactions, can be de-
tected. Thus, immutability of the blockchain assets is realized twofold
- (i) by being able to detect all changes and (ii) by being able to only
offer transactions that disallow the change of existing blockchain as-
sets. While the second way to ensure immutability can be also be met
with solutions other than a blockchain used as verification storage, the
detection of changed transactions represents a major reason to prove
the immutability of blockchain assets through the immutability of the
transactions. The third and fourth requirement - information obfuscation
respectively verifiability - are realized by storing the footprint entries
as Contracts, veiling the contained personal information, but still allow
for verification because the obfuscation was fulfilled by generating a
one-way hash, which allows for verification, if the original footprint
entry is hashed as well and compared with the hashes of the blockchain
assets.

4.1.4.2 Design Decision for utilizing Hyperledger Fabric

Hyperledger Fabric2 (HLF) is a modular and extensible open-source
blockchain platform for deploying and operating a permissioned blockchain

2 www.hyperledger.org/projects/fabric

4.1 architecture components 56

[34] and is designed to allow for pluggable components (e.g. different
consensus mechanisms). The central component of HLF is the dis-
tributed ledger, consisting of two different databases - the world state
database and the transaction log. While the world state database con-
tains the current state of all assets, the participants of the blockchain
network agree on, the transaction log comprises all transactions that
were executed in order to create and change these assets. Transactions
comprise of chaincode (i.e., smart contracts), allowing for the utilization
of user-defined transactions which can be invoked by participants of
the blockchain network. Transactions are ordered by the ordering ser-
vice, responsible for enforcing consensus, thereby generating blocks
that are persisted on the peers, which hold decentralized replication of
the distributed ledger. In order to simplify and accelerate application
development, a development toolset and framework called Hyperledger
Composer is provided, serving as an easy-to-use interface between appli-
cations and Hyperledger Fabric. Thus, Hyperledger Composer functions
as a high-level business abstraction layer to the Fabric network. Hy-
perledger Composer allows to easily model a blockchain network, its
participants, the assets that should be stored within the blockchain and
the definition for the transactions, enabling participants to instantiate
respectively change existing assets. This paragraph should only give
a very brief overview of both, Hyperledger Fabric and Hyperledger
Composer and their major components because describing their full
extent would go far beyond the scope of this thesis and will be covered
more in-depth by the Master’s thesis of my colleague Philipp Starzer.
Following this short introduction to HLF are the reasons why it is used
as blockchain platform for the proof-of-concept prototype. First of all,
HLF is not only developed by a major company (IBM) but also already
used by big players, such as American Express, SAP, Intel and many
more, leading to frequent releases of new features. Second, HLF does
fulfill all minimum requirements, such as definable assets, as well as
the support for smart contracts, which is necessary to create contracts
and verify them. Third, since iVolunteer does not need to support cryp-
tocurrency in any way which is used in public blockchains in order
to regulate the number of transactions processed from participants
(e.g. gas price for smart contract invocation within Ethereum [35]), the
decision to use a private blockchain over a public one was made.

4.1.5 Local Repository

The local repository represents the volunteer’s private volunteer profile,
storing their obtained achievements, i.e., finished tasks and achieved
competences (see Sect. 3.3.1). The private volunteer profile is manifested
as JSON-file (see Fig. 4.1), allowing for extensibility in the future, when
further types of footprint entries are realized. By storing the footprint
entries within the private volunteer profile in the same format as the
public volunteer profiles, both, footprint entries from the marketplace
and the local repository can use the same hashing function of the
trustifier, without having to apply data transformation beforehand. A
simple existing open source JSON-server implementation3 is employed,

3 https://www.npmjs.com/package/json-server

4.1 architecture components 57

allowing volunteers to give marketplaces access to their private vol-
unteer profile by providing REST-endpoints for the whole JSON-file
respectively for single footprint entries. Since one of the requirements
of iVolunteer is to give volunteers sovereignty over their data, they can
choose at any time whether they want to publish their local repository
either by starting or stopping the application. However, in order to carry
out synchronization between the marketplaces and the local repository,
it is a necessity for the respective volunteer to publish the private volun-
teer profile by starting the application. Without starting the application,
thus explicitly agreeing with the synchronization, marketplaces cannot
directly change the content of the local repository.

Listing 4.1: Example of a Local Repository

1 {
2 "repository": [
3 {
4 "id": "1",
5 "volunteer": {
6 "username": "pstarzer"
7 },
8 "finishedTasks": [
9 {

10 "id": "5af7e2ee379bb3593ceb041b",
11 "taskId": "5af7e28a379bb3593ceb0415",
12 "taskName": "Task 1",
13 "taskDescription": "Task 1 Description",
14 "marketplaceId": "Marketplace1",
15 "timestamp": 1526194926350
16 }
17],
18 "achievedCompetences": [
19 {
20 "id": "939c6ca3-1375-424e-816a-369e04465384",
21 "competenceId": "5af7e227379bb3593ceb0412",
22 "competenceName": "Flexibility",
23 "marketplaceId": "Marketplace1",
24 "timestamp": 1526194926350
25 }
26],
27 }
28]
29 }

4.1.6 Client

The frontend of iVolunteer is designed as an Angular4
6 web applica-

tion, providing different GUI views for users and their respective roles
on the marketplaces - volunteer, help-seeker, marketplace administrator
and platform administrator. Each view offers different interaction possi-
bilities with the cross-marketplace and the marketplaces, e.g., managing
tasks for help-seekers or viewing achievements for volunteers. In order

4 https://angular.io/

4.2 architecture deployment 58

for users to interact not only with one marketplace but with several,
the client provides an aggregated view, allowing users to view all tasks,
achievements, etc. of all subscribed marketplace within the same view,
thus heightening user experience through allowing users to interact
with all marketplace within the same view. Additionally, filtering op-
tions are provided, allowing users to select a subset of their subscribed
marketplaces, thereby filtering the aggregated view accordingly.

4.2 architecture deployment
After explaining each individual component in the previous section,
this section revolves around the concrete deployment of these compo-
nents as can be observed in Fig. 4.2. The deployment diagram shows the
structure of the prototype’s run-time system, including the distributed
servers, executing the components and the communication paths be-
tween them. These interactions between the components take place via
XMLHttpRequests (XHR) utilizing the published REST endpoints for
the entities displayed in the component diagram (see Fig. 4.1).

4.2.1 Cross-Marketplace Server

The Cross-Marketplace Server hosts the Angular web application, as well
as the Trustifier and the Cross-Marketplace components. Typical for an
Angular web application, the respective files (JavaScript, HTML, CSS,
etc.) files are bundled together using the webpack5 module bundler,
thus compressing the required files and decreasing loading times for
the web application because less data has to be transferred from the
cross-marketplace server to the clients. Both, the Trustifier and the Cross-
Marketplace component are realized as Java Spring Boot6

1.5 server appli-
cation, providing REST (Representational State Transfer) endpoints [36],
which are accessed by the other components through XMLHttpRequests
(XHR). To provide full CRUD (create, read, update, delete) functional-
ities for objects (e.g., User, Marketplace, HashableObject) that can be
exchanged via the interfaces as displayed in Fig. 4.1, for each of the
HTTP-methods - GET, PUT, POST and DELETE - a REST-endpoint is
published.
Additionally, the cross-marketplace component manifests its objects
into the Cross-Marketplace Database, mainly including registered Users
and Marketplaces, as well as subscription of users to marketplaces and
their respective roles they carry out. The cross-marketplace database is
realized, employing the the NoSQL database - MongoDB7, manifesting
the objects in JSON format. Using a NoSQL database allows for simple
extensibility of the stored objects because no common, explicit schema
is enforced.

5 https://webpack.js.org/
6 https://spring.io/projects/spring-boot
7 https://www.mongodb.com

4.2 architecture deployment 59

<<device>>
Cross-Marketplace Server
{Ubuntu Server 16.04 LTS}

<<device>>
Marketplace Server

{Ubuntu Server 16.04 LTS}

<<device>>
Client Computer

<<executionEnvironment>>
Browser

<<executionEnvironment>>
JRE 1.8.0

Trustifier

<<executionEnvironment>>
JRE 1.8.0

Marketplace

<<device>>
Blockchain Server

{Ubuntu Server 16.04 LTS}

Marketplace
Database

{MongoDB 3.6.2}

Workflow
Database

{MySQL 5.7.22}

Cross-MP
Database

{MongoDB 3.6.2}

<<executionEnvironment>> Angular 6

<<artifact>> Web App

<<executionEnvironment>>
Hyperledger Fabric 1.2

<<artifact>> Blockchain

Cross-Marketplace

Local Repository

Figure 4.2: Deployment diagram of the iVolunteer application

4.2.2 Blockchain Server

The Blockchain Server hosts a minimal deployment of Hyperledger Fabric
including one peer storing the distributed ledger and one ordering node,
responsible for consensus generation. While for later production usages,
a more sophisticated Fabric network would be necessary, including
several peers and ordering nodes distributed and managed by different
organizations, the focus for the proof-of-concept prototype laid on
showing the applicability of the whole architecture and the interactions
between the components, for which a sophisticated Fabric network is
not needed. An in-depth discussion about blockchains, HLF and the
integration into iVolunteer will be contained in the Master’s thesis of
my colleague Philipp Starzer.

4.2.3 Marketplace Server

The Marketplace Server publishes the marketplace component and its
respective databases - the marketplace db and the workflow db. While
the cross-marketplace component is designed as central communication
broker, thus only have to run once (disregarding potential load balanc-
ing and fail-safe challenges), one marketplace component should exist
for each VIO. Therefore, not only one marketplace server is considered
as part of the system architecture, but numerous. The marketplace
server is designed to run distributed, allowing VIOs to run market-
places within their very own server infrastructure and allowing them
to store their data therein, mitigating data centralization and the emer-

4.2 architecture deployment 60

gence of a data silo. The usage of two databases per marketplace is
owed to the workflow management framework Activiti8, which de-
pends on a MySQL9 database in order to store workflow definitions
and their respective instantiations. All other objects are stored in the
marketplace database, including Tasks, Projects, Achievements, etc.

4.2.4 Client Computer

The client computer represents the user’s device used to interact with
the iVolunteer platform. The web browser running on the client com-
puter downloads the Angular web application and allows for authenti-
cation and utilization of the functionalities described in Chapter 2. The
client computer further hosts the local repository application, allowing
to publish the private volunteer profile and grant the client access to
footprint entries thereof.

8 https://www.activiti.org/
9 https://www.mysql.com/

5 R E L AT E D W O R K

Contents
5.1 VMS Feature Categories . 61

5.1.1 Organization Management 62
5.1.2 Task Management 62
5.1.3 Footprint Management 63
5.1.4 Social Aspect . 64

5.2 Volunteer Management Systems 64
5.2.1 ”Freiwillig” . 64
5.2.2 Samaritan . 66
5.2.3 Volunteering Matters 67

5.3 Summary of Volunteer Management Systems 69

After having described requirements, conceptual approach and ar-
chitecture of iVolunteer, this thesis is rounded up in the following by
providing a brief comparison of iVolunteer to a few selected existing
VMS. A plethora of volunteer management systems already exists,
mostly focusing on satisfying the needs of VIOs and supporting them
with the management of volunteers and tasks, lacking means for vol-
unteers to privately digitize and exploit their achievements, e.g., task
accomplishments or earned competences. This may decrease engage-
ment, since appreciation of volunteer work is the only reward available,
and hinders the exploitation of engagement assets between NPOs and
beyond. iVolunteer however, puts volunteers in the middle of concern
by giving them sovereignty over their data and allowing for their usage
throughout multiple VIOs.
In this chapter, a review and comparison of a few volunteer manage-
ment systems with iVolunteer is conducted. First, the feature categories
and their respective features are discussed, followed by a short introduc-
tion to a small range of carefully selected VMS - Freiwillig1, Samaritan2

and Volunteering Matters3. Afterwards, they will be compared on the
basis of the presented features.

5.1 vms feature categories
In order to compare iVolunteer with existing volunteer management
systems, four feature categories are proposed, which are based on the
requirements in Chapter 2, a previously conducted survey [7] as well
as our own experience while developing iVolunteer. While the refer-
enced survey compares the VMSs on a much more detailed level, the

1 http://www.freiwilligenweb.at
2 http://www.samaritan.com
3 https://volunteeringmatters.org.uk/

61

5.1 vms feature categories 62

following features categories are primarily selected to showcase issues
and drawbacks of currently available VMS in areas, where iVolunteer
shines - (i) organization management, (ii) task management, (iii) foot-
print management and (iv) social aspects, all of which are going to be
explained in the next sections.

5.1.1 Organization Management

The organization management is related to how well a VMS can depict the
structure of VIOs. Naturally the organization management of formal
and informal VIOs are different, not least because formal VIOs (e.g. Red
Cross) are in general more strictly regulated wrt. their organizational
structure than informal VIOs. The only feature of the organization
management is the support of multitenancy.

5.1.1.1 Multitenancy

Whether a VMS supports multiple tenants or not is crucial, when
it comes to allowing VIOs to setup and configure their projects and
tasks. Not only whether multitenancy is integrated, but also in which
ways VIOs can manage and configure certain entities and processes
within the VMS is evaluated. Depending on the VMS, multitenancy
can vary from entering basic information about a VIO to completely
enabling a VIO to customize their organization, tasks or projects not
only structurally, but also on a functional level.

5.1.2 Task Management

Task management comprises task-specific features including the config-
uration possibilities of tasks, task matching, as well as whether tasks
can involve the utilization of non-human resources additionally to
volunteers.

5.1.2.1 Task Configuration

Based on the task configuration requirement (see Sect. 2.2.2.1), the four
task configuration possibilities are considered - (i) Task Properties, (ii)
Task Life-Cycle Configuration, (iii) Inter-Task Structural Relationships and
(iv) Inter-Task Behavioral Relationships.

5.1.2.2 Task Matching

Task matching refers to the process of finding adequate volunteers for
a task respectively appropriate tasks for a volunteer. The problem of
matching tasks and volunteers belongs to the domain of recommender
systems and there exists numerous approaches to how the matching
can be performed [37] (e.g., collaborative filtering, content-based or
ontology-based), this feature will only consider, whether matching is
integrated or not.

5.1 vms feature categories 63

5.1.2.3 Non-human resources

The feature non-human resource relates to whether a VMS allows to
integrate non-human resources and how flexible they can be managed
and used. Since non-human resources often times are critical for the
successful execution of tasks, their management and handling make up
an important aspect of the task management. Examples for non-human
resources are chairs or benches, which can be provided for a certain
task.

5.1.3 Footprint Management

Footprint management is concerned with how volunteers are able to man-
age achievements, they earned during their voluntary activities and use
them for other VIOs or elsewhere, e.g., for job applications. Footprint
management is split into the following four features, essential to orga-
nizing a volunteer’s footprint: (i) data sovereignty, (ii) immutability, (iii)
synchronization and (iv) verification.

5.1.3.1 Data Sovereignty

Data sovereignty is related to whether the volunteers are solely storing
their volunteer footprint or if it is stored centrally at the respective VIOs
or the government.

5.1.3.2 Immutability

Important for trust into the volunteer footprint is, whether volunteers or
VIOs can unjustifiably alter existing achievements or append new ones.
Immutability is important, whether the verification of the footprint can
be trusted.

5.1.3.3 Synchronization

Synchronization revolves around the fact, whether the footprint of each
volunteer can be updated and synchronized. This feature does not only
cover the insertion of new achievements, but also covers the update
of already existing achievements when they are changed, e.g., when a
competence expires after a certain time frame or when it is refreshed.

5.1.3.4 Verifiability

Last, it is important to be able to verify entries of the footprint in
order to state, whether they are valid or not. Verification typically
involves checking, whether the respective footprint entry is valid and
was indeed issued by the specified VIO. While an offline check by
calling the respective VIO would be always possible, this feature only
considers verification through the volunteer management system.

5.2 volunteer management systems 64

5.1.4 Social Aspect

According to a study of Statistics Canada4, almost half of all asked
volunteers stated, that a main reason why they volunteer is, that their
friends are engaged in the same organization as well [14]. Due to
that, VMSs have to not only provide functionalities revolving around
the task management, but also support the social aspects in various
forms. Similar to the requirements for the social management (see Sect.
2.3.3) the following three features are distinguished: (i) social relationship
management, (ii) social awareness management, (iii) social communication
management.

5.2 volunteer management systems
For the sake of comparability, the presented volunteer management
systems will be differentiated into VMS-portals and VMS-platforms.
While VMS-portals are lightweight VMS with the main focus on medi-
ating between VIOs and volunteers, VMS-platforms are fully-fledged
stand-alone applications providing full support for volunteer and or-
ganizational management. iVolunteer falls into the category of VMS-
platforms.
The following three systems were chosen, because all of them are web-
based VMS-portals or VMS-platforms with main characteristics that
fit well with the feature categories that were established beforehand.
”Freiwillig” is a VMS-portal, that incorporates a very similar idea of a
volunteer footprint primarily focuses thereon. Samaritan is a customiz-
able VMS-platform with focus on volunteer recruitment (’eRecruiter’),
organization management and task management (’eCoordinator’). Last,
Volunteering Matters is another VMS-portal, focusing primarily on find-
ing appropriate volunteers for voluntary activities.

5.2.1 ”Freiwillig”

”Freiwillig5” is a VMS-platform operated by the Austrian Federal Min-
istry of Labour, Social Affairs, Health and Consumer Protection6. The
main idea behind this platform is to incentivize cooperation of volun-
tary organizations and to inform about voluntary work or events not
only in Austria, but around the globe as can be seen in Fig. 5.1.

4 https://www.statcan.gc.ca/
5 http://www.freiwilligenweb.at/
6 https://www.sozialministerium.at

5.2 volunteer management systems 65

Figure 5.1: Impressions of ”Freiwillig”

The main unique selling proposition of ”Freiwillig” is that it enables
volunteers to receive their volunteer footprint in the form of a volun-
teer’s pass, which is in its essence a document listing all organizations a
volunteer participates and a set of skills and competencies they obtained
during their voluntary activities. The volunteer’s pass is a hand-written
document belonging to the volunteers themselves and is handed out by
the Austrian Federal Ministry of Labour, Social Affairs, Health and Con-
sumer Protection as well. This represents a major drawback compared
to iVolunteer, which digitizes the voluntary engagement and allows
for straightforward synchronization of the achievements into the local
repository. By only allowing a hand-written document serving as the
volunteer footprint, the overhead for managing the volunteer’s pass
may exceed the workforce of the VIO, thus will not be managed at all.

5.2.1.1 Footprint Management

For ”Freiwillig”, the volunteer’s pass functions as volunteer footprint,
but due to the fact that is is a hand-written documents both features
immutability and synchronization are not supported.
Furthermore, the verification of the footprint turns out to be difficult,
because the organization would have to verify each footprint entry
by cross-checking it with their internal system, which is probably
not automated nor generalized across multiple VIOs. Data sovereignty
is provided, because the volunteers themselves own the volunteer
footprint.

5.2.1.2 Organization Management

”Freiwillig” does support the functionality of multitenancy through
allowing VIOs to register and manage their activities and events. How-
ever, since each VIO has to be registered with an extract of either
their company registration or their association registration, informal
organizations, like neighbourhoods or unregistered organizations are
prohibited from using the platform.

5.2 volunteer management systems 66

5.2.1.3 Social Integration

”Freiwillig” does not support any social aspects, except a global timeline
allowing VIOs to provide important news about activities and events.

5.2.1.4 Task Management

While ”Freiwillig” does allow VIOs to manage events and projects, a
dedicated task management is not integrated.

5.2.2 Samaritan

Samaritan7 (see Fig. 5.2) is a VMS-platform, with the main focus on
managing volunteer processes and lays a focal point especially on
customization thereof. Thus, Samaritan targets especially large VIOs
with their very own voluntary processes, which can be realized therein.
Samaritan offers three central features: (i) volunteer recruitment sup-
port, (ii) volunteer management and (iii) volunteer tracking.

Figure 5.2: Impressions of Samaritan

volunteer recruitment support Samaritan helps with the recruit-
ment of new volunteers by providing a wide range of internet re-
cruitment support (i.e. Facebook Integration, pre-built opportunities
and registrations forms, calendar and map integration, etc.) as well as
performing criminal background checks.

volunteer management Volunteer management includes the op-
portunity to hierarchically structure a VIO’s organization, scheduling
volunteers with an calendar, automatic and manual e-mail notifications
and a reporting system for voluntary activities.

volunteer tracking Samaritan supports an integrated data man-
agement, which tracks volunteers throughout their work by storing
their activities as well as their time spent on them.

7 https://samaritan.com/

5.2 volunteer management systems 67

5.2.2.1 Footprint Management

Samaritan doesn’t support footprint management at all, thus all in-
formation of the volunteer’s work is stored centrally at the VIO and
cannot be automatically used by the volunteers for other organizations.

5.2.2.2 Organization Management

Samaritan does support multiple tenants. Each tenant, i.e., a VIO is
registered at the Samaritan web application.

5.2.2.3 Social Integration

Samaritan itself doesn’t support any social interaction like chat, groups
etc., however, volunteers can post activities on social media platforms
like facebook or twitter.

5.2.2.4 Task Management

Within Samaritan, most of the features of a task management are
provided, including the support for structural task relationships, task
configuration, workflow execution, task assignment and task matching. As
far as could be evaluated, behavioral task relationships and integration of
non-human resources are not supported.

5.2.3 Volunteering Matters

Volunteering Matters8 (see Fig. 5.3) is a VMS-portal located in the United
Kingdom, incorporating around 30,000 volunteers each year. Within
Volunteering Matters, people are able to volunteer full-time or part-time
by applying for voluntary activities across the UK. Thus, Volunteering
Matters primarily helps to mediate between volunteers and formal
VIOs respectively help seekers.
The main feature provided by Volunteering Matters is a search for vol-
untary activities, which helps to apply for one of them. After entering a
postal code, volunteers are able to find near volunteering opportunities,
sorted by the distance to the location. After volunteers found a suitable
activity, they can apply for it. Afterwards, the respective VIO will con-
tact suitable volunteers, if they think the application was appropriate
and the required skill-set of the volunteering activity is met by the
volunteer.

8 https://volunteeringmatters.org.uk

5.2 volunteer management systems 68

Figure 5.3: Impressions of Volunteering Matters

5.2.3.1 Footprint Management

Volunteering matters does not support volunteer footprints and there-
fore does not provide any footprint management at all.

5.2.3.2 Organization Management

The Volunteering Matters platform does support multiple tenants, but
they are only able to state basic information about their VIO, similar to
”Freiwillig”.

5.2.3.3 Social Integration

Within Volunteering Matters, neither volunteers nor help seeker have
the opportunity for social intercourse and therefore social integration is
not supported. However, the web page introduces a blog to inform the
volunteers as well the VIOs about their volunteering activities, which
partly fulfills the needs of the social awareness management.

5.2.3.4 Task Management

Volunteering Matters does only allow to give a rough description for
tasks (structural task configuration), but neither does allow for structural
nor behavioral task relationships. Task life-cycle configuration and non-human
resource integration are not supported and task matching is only viable to
find voluntary work near your address, but does not incorporate other
factors like preferences and competencies of the volunteer.

5.3 summary of volunteer management systems 69

5.3 summary of volunteer management sys-
tems

In our evaluation, three volunteer management systems were compared,
each of which pursuing different objectives and providing functionality
scopes. As a summary of this chapter, an overview about all previously
stated features compared with iVolunteer (see Table 5.1) is provided.
The marks in the cells indicate whether a feature is fully supported(3),
partly supported (∼) or not supported(7) by the respective VMS.

Features
Applications

iVolunteer Freiwillig Samaritan
Volunteering

Matters

Footprint

Management

Data Sovereignty 3 3 7 7

Immutability 3 7 7 7

Synchronization 3 7 7 7

Verifiability 3 ∼ 7 7

Organization

Management
Multitenancy 3 ∼ 3 ∼

Social

Integration

Communication Management 3 7 7 3

Relationship Management 3 7 7 3

Awareness Management 3 3 7 ∼

Task

Management

Task Properties 3 7 3 ∼

Task Life-Cycles 3 7 3 7

Structural Relationships 3 7 3 7

Behavioral Relationships 3 7 7 7

Non-Human Resources 3 7 7 7

Task Matching 3 7 3 ∼

Table 5.1: Feature comparison of volunteer management systems

6 C O N C LU S I O N A N D F U T U R E W O R K

Contents
6.1 Conclusion . 70
6.2 Future Work . 71

6.2.1 Structural Extensions 71
6.2.2 Structural Extensions of Task Management . . . 72
6.2.3 Behavioral Extensions 73

6.1 conclusion
Conversely to existing volunteer management systems, the proposed
VMS - iVolunteer - centers around volunteers, putting their require-
ments and needs in the foreground, including the need for more ex-
ploitation of their acquired competences and volunteering activities
across various formal and informal organizations. iVolunteer allows
for the integration of both, formal and informal VIOs, which are able
to publish their volunteering activities in the form of tasks at the
marketplaces. To realize, in contrast to most of the existing system, a
decentralied VMS, a distributed architecture was developed, separating
the marketplaces from each other, allowing VIOs to run their own
marketplace within their own IT-infrastructure. Each marketplace is at-
tributed with a configurable task management, including configuration
possibilities for tasks to not only adapt to their internal structure with
the possibility to add new properties, but also to adjust the life-cycle of
tasks through the incorporation of the workflow management frame-
work Activiti. To also allow for configuration between tasks, structural
and behavioral task relationships were established, allowing to build
task hierarchies in order to break down complex tasks into sub-tasks
and to, e.g., handle temporal dependencies between tasks.
To manage and coordinate between the marketplaces and the users, the
cross-marketplace component functions as mediator, allowing for the
interoperability of marketplaces. However, this interoperability should
not lead to marketplaces exchanging volunteer information between
them, but on the contrary, iVolunteer establishes data sovereignty for
volunteers by mitigating data silos and allowing them to store their
volunteer footprint decentralized in the local repository. iVolunteer is
conceptualized to give volunteers the freedom to choose which footprint
entry they want to synchronize into their local repository and which
footprint entries they want to publish to which marketplace. However,
by giving volunteers this functionality, iVolunteer has to guarantee,
that they don’t exploit the system by appending invalid achievements
to their local repository. Through storing hashed versions of issued

70

6.2 future work 71

achievements in the blockchain, verification of footprint entries can be
carried out, in order for organizations to be certain, that the published
footprint entries are indeed valid.
In order to regulate access to the blockchain and guarantee trust into
the verification, a middleware component - the trustifier - was estab-
lished handling the creation of contracts, i.e., hashed footprint entries,
as well as the verification of footprint entries.

6.2 future work
In this section, valuable extensions to the previously presented concepts
will be discussed, distinguishing between structural and behavioral
extensions. While the former revolves around extending the structure
of shown concepts, the latter deals with extensions wrt. their internal
processes.

6.2.1 Structural Extensions

While there may be countless interesting extensions originating from the
domain of volunteer management systems, this section focuses on three
major areas of this thesis - (i) footprint entries, (ii) task management
and (iii) social management.

6.2.1.1 Structural Extensions of Footprint Entries

In this thesis, footprint entries included mainly earned competences
and finished tasks, thus fell short and were majorly used as black box
for all types of assets a volunteer may receive throughout their vol-
unteering career. Thus, it is necessary to establish a taxonomy for all
possible footprint entries (see Sect. 6.2.1.1). A first step has been made
in our recent publication ”(L)earning by Doing – »Blockchainifying«
Life-Long Volunteer Engagement” [38] submitted to the 53th Hawaii In-
ternational Conference on System Sciences. Moreover, footprint entries
are not only far more diverse than displayed in this thesis, they are also
subject to evolution, where, e.g., earned competences may change wrt.
their level of proficiency (see Sect. 6.2.1.1). Last, in order to adequately
depict competences within iVolunteer, an integration of existing com-
petence ontologies becomes a necessity (see Sect. 6.2.1.1), not only for
appropriately handling and structuring competences, but also in order
to put a system in place where competences can be compared (see Sect.
6.2.3.1) respectively derived (see Sect. 6.2.3.2).

Evolutionary Aspect of Footprint Entries
In the presented model for footprint entries, the aspect of evolution was
not discussed for the sake of brevity. Nevertheless, in reality, especially
competences are not awarded once and exist thereforth without any
change. Competences should be attributed with a level of proficiency,
being ideally automatically adapted due to by volunteers carrying out
tasks, that require the respective competence. Thus, by considering the
feedback of how well a competence was applied throughout a task,

6.2 future work 72

respectively, how often a volunteer exercises the competence, its level
of proficiency would change, leading to an evolution of the compe-
tence. Furthermore, the evolutionary aspect should consider that certain
competences are only valid for a certain time frame, afterwards the
competence would be lost if it was not refreshed or recertified.

Footprint Entry Taxonomy
Conversely to the depicted concepts, achievements (i.e., the main

footprint entries) in reality cover much more aspects than earned com-
petences and performed tasks. A taxonomy for all different types of
voluntary achievements would be needed, including, e.g., feedback
form other participants (e.g., other volunteers, help-seekers), various
organization-specific statuses like achieving a new position (e.g., group
leader), acquiring an award for outstanding performance or honoring
for their life-long participation within the organization.

Integration of existing Competence Ontology
Additionally to the necessity of developing and incorporating a tax-

onomy for the various footprint entries, especially competences have
the be founded on existing competence models and ontologies, like
the competence atlas introduced by Erpenbeck and Heyse [39], which
expands on the idea of competence dimensions by allowing to combine
them with each other resulting in a less rigorous model, because com-
petences no longer have to exclusively belong to a single competence
dimension, but can belong to a combination of at most two dimensions.
Therefore, by combining the four dimensions with each other, 16 cross-
dimensions are established. For example, competences belonging to
both, the personal competence dimension and the social-communicative
competence dimension include teamwork or the ability to integrate into
a group. An in-depth description of the whole competence atlas can be
found in [39] and [19].

6.2.2 Structural Extensions of Task Management

While the conveyed task management already represents a solid foun-
dation wrt. structural and behavioral management, the additionally
conceptualized packages, especially the resource and recommendation
management were discussed briefly, only. The resource management
lacks extensions for the claiming of resources for tasks and the differ-
entiation between resources that can only be claimed once at the same
time for a task and those that can be used multiple times simultaneously.
Similar, recommendation management does only differentiate between
recommendations and suggestions and lacks additional information
about how well a recommendation would fit or feedback about why
the recommendation was issued based on a volunteer’s preferences or
history.

6.2.2.1 Structural Extensions of Social Management

Last, since a detail discourse of the social management was not scope of
this thesis, it depicts just a very trivial way to handle the basic objects,
e.g., posting, comment, group, relationships between users, etc. Much

6.2 future work 73

more effort would be needed to incorporate the basic functionality of
social networks that was discussed.

6.2.3 Behavioral Extensions

Conversely to structural extensions, behavioral extensions discusses
changes to the processes of the proposed functionalities. For brevity
reasons, sometimes just straightforward solutions to the problems dis-
cussed in the thesis were realized, leading to less fitting solutions. In
this section, possible realizations for the two depicted components - (i)
matcher and (ii) profiler, as well as (iii - iv) new verification possibilities
of footprint entries and the integration of (v) participants with different
trust-levels will be discussed.

6.2.3.1 Comprehensive Matching between Volunteers and Tasks

Matching between volunteers and tasks is a traditional recommender
system problem, for which numerous different approaches exist [40].
The main recommender techniques revolve around collaborative fil-
tering and content-based recommendation as well as ontology-based
recommendation. For iVolunteer, especially ontology-based recommen-
dation jointly with the integration of a footprint entry taxonomy (see
Sect. 6.2.1.1) and competence ontologies (see Sect. 6.2.1.1) would fit
well, exploiting semantic dependencies within the ontologies. Never-
theless, in order to find a good fit, ontology-based recommendation
should be applied in accordance with, especially, collaborative filtering,
thereby not only considering ontological similarities, but also previous
interaction of similar volunteers.

6.2.3.2 Competence Derivation for Volunteers

The profiler’s main requirement revolves around deriving competences
for volunteers by considering their previous competences and their
volunteer activities. Similar to the realization of the matcher, machine
learning approaches and semantic approaches can be applied to over-
come this problem as previously stated in [41] and [42]. While a machine
learning approach would learn from previously earned competences
based on an annotated training set, the semantic approach would con-
sider the competence ontology and find appropriate derivation.

6.2.3.3 Refinement of Verification of Footprint Entries

The current approach of verifying footprint entries revolve around
hashing and comparing them with entries in the blockchain. While this
guarantees the verification of footprint entries’ validity, the verification
of authenticity (i.e., whether the issuer of a footprint entry is authentic)
and topicality, especially when considering the evolutionary aspect
discussed in Sect. 6.2.1.1 are not discussed.

6.2.3.4 Historical requests of Footprint Entries

When considering the evolutionary aspect of footprint entries, verifying
their history would give the organizations more information, e.g., when

6.2 future work 74

volunteers want to publish competences to their respective marketplace.
Thus not only verifying single footprint entries but also their whole
history would represent a more feature-complete realization of the
verification requirement.

6.2.3.5 Trust-Levels for Participants

Currently, every participant of iVolunteer operates on the same level
of trust, e.g., volunteers which already carried out numerous tasks
would be as trustworthy as newly registered volunteers. Conversely,
marketplaces of large established VIOs, e.g., the Red Cross or the
Fire Brigade, would be as trustworthy as informal marketplaces of, for
example, neighbour assistance. In order to counteract this generalization
of all participants, a system for different levels of trust for participants
has to be established. Possible approaches to differentiate between
different levels of trust would be the introduction of diverse types of
user registration, e.g., registration via email vs registration via official
document like a passport. Marketplaces could be differentiated between
VIOs registered with or without their registration number.

B I B L I O G R A P H Y

[1] L. M. Salamon and W. Sokolowski, The Size and Composition of the
European Third Sector, pp. 49–94. Springer International Publishing,
2018. ISBN: 978-3-319-71473-8.

[2] M. V. MERRILL, “Global Trends and the Challenges for Volun-
teering,” International Journal of Volunteer Administration, vol. 24.1,
pp. 6–14, 2006.

[3] L. M. Salamon and W. Sokolowski, Beyond Nonprofits: In Search of
the Third Sector, pp. 7–48. Springer International Publishing, 2018.
ISBN: 978-3-319-71473-8.

[4] United Nations Volunteers, “State of the World’s Volunteerism
Report.” https://www.unv.org/sites/default/files/UNV_SWVR_

2018_English_WEB.pdf, 2018. Accessed: 2019-07-08.

[5] Salamon, Lester M. and Sokolowski, S. Wojciech and Haddock,
Megan A. and Tice, Helen S. , The state of global civil society and
volunteering. Johns Hopkins University Center for Civil Society
Studies, 2013. ISBN: 1-886333-63-7.

[6] E. Kapsammer, E. Kimmerstorfer, B. Pröll, W. Retschitzegger,
W. Schwinger, J. Schönböck, N. Dürk, G. Rossi, and S. Gordillo,
“iVOLUNTEER: A Digital Ecosystem for Life-long Volunteering,”
in Proceedings of the 19th International Conference on Information Inte-
gration and Web-based Applications & Services, iiWAS ’17, (New York,
NY, USA), pp. 366–372, ACM, 2017.

[7] J. Schönböck, M. Raab, J. Altmann, E. Kapsammer, A. Kusel,
B. Pröll, W. Retschitzegger, and W. Schwinger, “A Survey on Vol-
unteer Management Systems,” in 2016 49th Hawaii International
Conference on System Sciences (HICSS) (T. X. Bui and R. H. S. Jr.,
eds.), pp. 767–776, IEEE Computer Society, 2016. ISBN: 978-0-7695-
5670-3.

[8] J. Cravens and R. Jackson, “Survey of software tools used
to track and manage volunteer information.” http://www.
coyotecommunications.com/tech/volmanagesoftware.pdf, 2012.
Accessed: 2019-07-08.

[9] M. Raab, “A prototypical approach for a competency-based task
allocation system in the context of voluntary organizations,” Mas-
ter’s thesis, University of Applied Science Upper Austria Hagen-
berg, 2016.

[10] N. Mundbrod, F. Beuter, and M. Reichert, “Supporting Knowledge-
Intensive Processes through Integrated Task Lifecycle Support,” in
2015 IEEE 19th International Enterprise Distributed Object Computing
Conference, pp. 19–28, Sep. 2015.

75

https://www.unv.org/sites/default/files/UNV_SWVR_2018_English_WEB.pdf
https://www.unv.org/sites/default/files/UNV_SWVR_2018_English_WEB.pdf
http://www.coyotecommunications.com/tech/volmanagesoftware.pdf
http://www.coyotecommunications.com/tech/volmanagesoftware.pdf

bibliography 76

[11] N. Mundbrod and M. Reichert, “Configurable and Executable Task
Structures Supporting Knowledge-intensive Processes,” in 36th
International Conference on Conceptual Modelling (ER 2017), no. 10650

in LNCS, pp. 388–402, Springer, November 2017.

[12] N. Mundbrod and M. Reichert, “Flexible Task Management Sup-
port for Knowledge-Intensive Processes,” in 21st IEEE Int’l Enter-
prise Distributed Object Computing Conference (EDOC 2017), pp. 95–
102, IEEE, October 2017.

[13] G. Kappel, S. Rausch-Schott, and W. Retschitzegger, “Coordination
in Workflow Management Systems - A Rule-Based Approach,” in
Coordination Technology for Collaborative Applications - Organizations,
Processes, and Agents [ASIAN 1996 Workshop], pp. 99–120, Springer-
Verlag, 1998.

[14] Vézina, M and Crompton, S, “Volunteering in Canada.”
https://www150.statcan.gc.ca/n1/en/pub/11-008-x/2012001/
article/11638-eng.pdf?st=sGRvYBqt, 2012. Accessed: 2019-07-
08.

[15] S. Boudebza, F. Azouaou, and O. Nouali, “Ontology-Based Ap-
proach for Temporal Semantic Modelling of Social Networks,” in
Proceedings of the 2015 3rd International Conference on Future Internet
of Things and Cloud, FICLOUD ’15, pp. 736–741, IEEE Computer
Society, 2015.

[16] H. Waheed, M. Anjum, M. Rehman, and A. Khawaja, “Investi-
gation of user behavior on social networking sites,” PLOS ONE,
vol. 12, pp. 1–19, 02 2017.

[17] M. Vacura and V. Svátek, “Ontological analysis of human relations
for semantically consistent transformations of FOAF data,” CEUR
Workshop Proceedings, vol. 631, pp. 15–27, 2010.

[18] G. Cheetham and G. Chivers, “The reflective (and competent)
practitioner: a model of professional competence which seeks
to harmonise the reflective practitioner and competence-based
approaches,” Journal of European Industrial Training, vol. 22, pp. 267–
276, oct 1998.

[19] J. Erpenbeck and W. Sauter, So werden wir lernen!: Kompetenzentwick-
lung in einer Welt fühlender Computer, kluger Wolken und sinnsuchen-
der Netze. Springer Berlin Heidelberg, 2013. ISBN: 9783642371806.

[20] V. Heyse and J. Erpenbeck, Kompetenztraining: 64 Informations- und
Trainingsprogramme. Schäffer-Poeschel, 2004. ISBN: 9783791022635.

[21] M. T. Strebler, D. Robinson, and P. Heron, Getting the Best Out
of Your Competencies (IES Report 334). Institute for Employment
Studies, 1997. ISBN: 1-85184-260-8.

[22] T. Hoffmann, “The meanings of competency,” Journal of European
Industrial Training, vol. 23, no. 6, pp. 275–285, 1999.

https://www150.statcan.gc.ca/n1/en/pub/11-008-x/2012001/article/11638-eng.pdf?st=sGRvYBqt
https://www150.statcan.gc.ca/n1/en/pub/11-008-x/2012001/article/11638-eng.pdf?st=sGRvYBqt

bibliography 77

[23] F. Delamare Le Deist and J. Winterton, “What Is Competence?,”
Human Resource Development International, vol. 8, no. 1, pp. 27–46,
2005.

[24] Object Management Group, “Business Process Model and Nota-
tion.” https://www.omg.org/spec/BPMN/2.0/PDF, 2011. Accessed:
2019-07-08.

[25] F. Ricci, L. Rokach, and B. Shapira, Recommender Systems Handbook.
Springer Publishing Company, Incorporated, 2nd ed., 2015. ISBN:
978-1-4899-7637-6.

[26] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
https://bitcoin.org/bitcoin.pdf, 2008. Accessed: 2019-07-08.

[27] E. Kapsammer, B. Pröll, W. Retschitzegger, W. Schwinger,
M. Weißenbek, and J. Schönböck, “The blockchain muddle: A
bird’s-eye view on blockchain surveys,” in Proceedings of the 20th
International Conference on Information Integration and Web-based
Applications & Services, iiWAS2018, pp. 370–374, ACM, 2018.

[28] P. Fraga-Lamas and T. M. Fernández-Caramés, “A Review on
Blockchain Technologies for an Advanced and Cyber-Resilient
Automotive Industry,” IEEE Access, vol. 7, pp. 17578–17598, 2019.

[29] K. Francisco and D. Swanson, “The Supply Chain Has No Clothes:
Technology Adoption of Blockchain for Supply Chain Trans-
parency,” Logistics, vol. 2, no. 1, p. 2, 2018.

[30] S. Mann, V. Potdar, R. S. Gajavilli, and A. Chandan, “Blockchain
Technology for Supply Chain Traceability, Transparency and Data
Provenance,” in Proceedings of the 2018 International Conference on
Blockchain Technology and Application, ICBTA 2018, (New York, NY,
USA), pp. 22–26, ACM, 2018.

[31] E. E. Bessa and J. S. B. MARTINS, “A Blockchain-based Educational
Record Repository,” in ADVANCE 2019 - International Workshop on
ADVANCEs in ICT Infrastructures and Services, vol. 1 of ADVANCE
2019 - International Workshop on ADVANCEs in ICT Infrastructures
and Services, pp. 1–11, Jan. 2019.

[32] J. Gresch, “An Educational Blockchain for the University of Zurich
(UZHBC),” Master’s thesis, University of Zurich, 2018.

[33] C. Brunner., F. Knirsch., and D. Engel., “SPROOF: A Platform
for Issuing and Verifying Documents in a Public Blockchain,” in
Proceedings of the 5th International Conference on Information Sys-
tems Security and Privacy - Volume 1: ICISSP,, pp. 15–25, INSTICC,
SciTePress, 2019.

[34] E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains,” in Proceedings of the Thir-
teenth EuroSys Conference, EuroSys ’18, pp. 30:1–30:15, ACM, 2018.
ISBN: 978-1-4503-5584-1.

https://www.omg.org/spec/BPMN/2.0/PDF
https://bitcoin.org/bitcoin.pdf

bibliography 78

[35] V. Buterin, “Ethereum: A next-generation smart contract and decen-
tralized application platform.” https://github.com/ethereum/
wiki/wiki/White-Paper, 2014. Accessed: 2019-07-08.

[36] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, Inc., 2013. ISBN: 978-1449358068.

[37] J. Schönböck, J. Altmann, E. Kapsammer, E. Kimmerstorfer, B. Pröll,
W. Retschitzegger, and W. Schwinger, “A Semantic MatchMaking
Framework for Volunteering MarketPlaces,” in Trends and Advances
in Information Systems and Technologies, pp. 701–711, Springer Inter-
national Publishing, 2018. ISBN: 978-3-319-77703-0.

[38] E. Kapsammer, B. Pröll, W. Retschitzegger, W. Schwinger,
M. Weißenbek, and J. Schönböck, “(L)earning by Doing –
»Blockchainifying« Life-Long Volunteer Engagement,” 2019. Sub-
mitted to 53th Hawaii International Conference on System Sciences
(HICSS).

[39] V. Heyse and J. Erpenbeck, Kompetenzmanagement: Methoden, Vorge-
hen, KODE® und KODE®X im Praxistest. Waxmann Verlag GmbH,
2007. ISBN: 9783830968252.

[40] J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based recom-
mendation: a review of ontology-based recommender systems for
e-learning,” Artificial Intelligence Review, vol. 50, pp. 21–48, Jun
2018.

[41] J. Martinez-Gil, A. L. Paoletti, and K.-D. Schewe, “A smart ap-
proach for matching, learning and querying information from the
human resources domain,” in New Trends in Databases and Infor-
mation Systems, pp. 157–167, Springer International Publishing,
2016.

[42] M. Tomassen, “Exploring the Black Box of Machine Learning
in Human Resource Management : An HR Perspective on the
Consequences for HR professionals,” August 2016.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

	SwornDeclaration
	Abstract
	Abstrakt
	Acknowledgments
	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Volunteering
	1.2 Challenges of Volunteer Management Systems
	1.3 Research project - "Cooperative Activities (CrAc)"
	1.4 Research project - "iVolunteer"
	1.5 Problem definition
	1.6 Thesis outline

	2 Requirements
	2.1 User Roles
	2.1.1 Volunteer
	2.1.2 Help-Seeker
	2.1.3 Marketplace Administrator
	2.1.4 Platform Administrator

	2.2 Marketplace Component
	2.2.1 Marketplace Configuration Management
	2.2.2 Task Management
	2.2.3 Competence Management
	2.2.4 Resource Management
	2.2.5 Recommendation Management

	2.3 Cross-Marketplace Component
	2.3.1 User Management
	2.3.2 Multitenancy Management
	2.3.3 Social Management
	2.3.4 GUI Management

	2.4 Footprint Component
	2.4.1 Footprint Verification Management
	2.4.2 Footprint Synchronization Management

	3 Conceptual Approach
	3.1 Cross-Marketplace Component
	3.1.1 User Management
	3.1.2 Multitenancy Management
	3.1.3 Social Management
	3.1.4 GUI Management

	3.2 Marketplace Component
	3.2.1 HashableObject
	3.2.2 Competence Management
	3.2.3 Task Structure Management
	3.2.4 Task Life-Cycle Definition
	3.2.5 Task Life-Cycle Instance
	3.2.6 Resource Management
	3.2.7 Recommendation Management
	3.2.8 Achievement Management

	3.3 Footprint Component
	3.3.1 Local Repository
	3.3.2 Trust Management

	4 System Architecture
	4.1 Architecture Components
	4.1.1 Cross-Marketplace Component
	4.1.2 Marketplace Component
	4.1.3 Trustifier
	4.1.4 Blockchain
	4.1.5 Local Repository
	4.1.6 Client

	4.2 Architecture Deployment
	4.2.1 Cross-Marketplace Server
	4.2.2 Blockchain Server
	4.2.3 Marketplace Server
	4.2.4 Client Computer

	5 Related Work
	5.1 VMS Feature Categories
	5.1.1 Organization Management
	5.1.2 Task Management
	5.1.3 Footprint Management
	5.1.4 Social Aspect

	5.2 Volunteer Management Systems
	5.2.1 ''Freiwillig''
	5.2.2 Samaritan
	5.2.3 Volunteering Matters

	5.3 Summary of Volunteer Management Systems

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Structural Extensions
	6.2.2 Structural Extensions of Task Management
	6.2.3 Behavioral Extensions

	Bibliography

